Advanced computer storage research from IBM and others

From Computerworld, IBM is working on three advanced memory storage technologies

Carbon annotates, which are molecule-size objects composed entirely of carbon in a cylindrical structure, giving them unique properties.

Nantero Inc. in Woburn, Mass., has built prototypes of a chip called NRAM (for nanotube-based/nonvolatile RAM) that is faster than DRAM, as portable as flash memory, and able to provide permanent storage because the wafer uses nonvolatile storage as its basis

Colossal Storage Corp. in Pokomoke City, Md., is developing a rewritable 3-D volume holographic removable disk media. The nanotechnology under development at Colossal is a possible replacement for today’s magnetic disk drives and memory chips. Unlike magnetic media, which only stores data on the surface of the disk drive, holographic optical disk drives use two or more laser beams that work with one another to read and write data throughout the disk media.

Michael Thomas, CEO of Colossal, says holographic optical media drives are superior to other storage nanotechnologies because of their 100+TB capacities, near zero read and write response times and 100-plus year lifespan.

The first generation of holographic optical disk media and disk drives is scheduled to hit the market this year when InPhase Technologies Inc. in Longmont, Colo., releases a 300GB holographic disk and drive. About the same size as today’s DVDs, they will hold the equivalent of 64 full-length movies. While they initially will be available in a write-once format, a rewritable disk is on InPhase’s product road map.

Seagate Technologies’s new HAMR (heat-assisted magnetic recording) technology addresses current concerns about today’s perpendicular recording methods for magnetic disk media. HAMR, combined with self-ordered magnetic arrays of iron-platinum particles, is expected to break through the so-called superparamagnetic limit of magnetic recording by more than a factor of 100 to ultimately deliver storage densities as great as 50 terabits per square inch. It is expected after 2010 in commercial drives.