Early nanomedicine helping to regenerate nerves

Nanofiber scaffolds can help nerves grow 4 millimeters in 5 days and
a method developed at the University of Miami shows how magnetic nanoparticles (MNPs) may be used to create mechanical tension that stimulates the growth and elongation of axons of the central nervous system neurons.

Researchers at the University of California, Berkeley have developed a technology that has the potential to serve as a better alternative than currently available synthetic nerve grafts. The graft material is composed entirely of aligned nanoscale polymer fibers. These polymer fibers act as physical guides for regenerating nerve fibers. They have also developed a way to make these aligned nanofibers bioactive by attaching various biochemicals directly onto the surfaces of the nanofibers. Thus, the bioactive aligned nanofiber technology mimics the nerve autograft by providing both physical and biochemical cues to enhance and direct nerve growth.

This technology has been tested by culturing rat nerve tissue ex vivo on our bioactive aligned nanofiber scaffolds. When the nerve tissue was cultured on unaligned nanofibers there was no nerve fiber growth onto the scaffolds. However, on aligned nanofiber scaffolds, they not only observed nerve fibers growing from the tissue but the nerve fibers were aligned in the same orientation as the nanofibers. Furthermore, when there were biochemicals present on the nanofibers, the nerve fiber growth was enhanced 5 fold. In a matter of just 5 days, nerve fibers had extended 4 millimeters from the nerve tissue in a bipolar fashion on the bioactive aligned nanofiber scaffolds. Thus, this technology can induce, enhance and direct nerve fiber regeneration in a straight and organized manner.

About The Author