Lensless Quantum Dot Infrared Detector with Double Detectivity Now and 20 Times More Detectivity In a Few Years

Ad Support : Nano Technology   Netbook    Technology News    Computer Software

Researchers from Rensselaer Polytechnic Institute have developed a new nanotechnology-based “microlens” that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices.

By leveraging the unique properties of nanoscale gold to “squeeze” light into tiny holes in the surface of the device, the researchers have doubled the detectivity of a quantum dot-based infrared detector. With some refinements, the researchers expect this new technology should be able to enhance detectivity by up to 20 times
“I think that, within a few years, we will be able to create a gold-based QDIP device with a 20-fold enhancement in signal from what we have today,” Lin said. “It’s a very reasonable goal, and could open up a whole new range of applications from better night-vision goggles for soldiers to more accurate medical imaging devices.”


Results of the study, titled “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” were published online recently by the journal Nano Letters

In this paper, we report a successful realization and integration of a gold two-dimensional hole array (2DHA) structure with semiconductor InAs quantum dot (QD). We show experimentally that a properly designed 2DHA-QD photodetector can facilitate a strong plasmonic−QD interaction, leading to a 130% absolute enhancement of infrared photoresponse at the plasmonic resonance. Our study indicates two key mechanisms for the performance improvement. One is an optimized 2DHA design that permits an efficient coupling of light from the far-field to a localized plasmonic mode. The other is the close spatial matching of the QD layers to the wave function extent of the plasmonic mode. Furthermore, the processing of our 2DHA is amenable to large scale fabrication and, more importantly, does not degrade the noise current characteristics of the photodetector. We believe that this demonstration would bring the performance of QD-based infrared detectors to a level suitable for emerging surveillance and medical diagnostic applications.

The detectivity of an infrared photodetector is determined by how much signal it receives, divided by the noise it receives. The current state-of-the art in photodetectors is based on mercury-cadmium-telluride (MCT) technology, which has a strong signal but faces several challenges including long exposure times for low-signal imaging. Lin said his new study creates a roadmap for developing quantum dot infrared photodetectors (QDIP) that can outperform MCTs, and bridge the innovation gap that has stunted the progress of infrared technology over the past decade.

The surface plasmon QDIPs are long, flat structures with countless tiny holes on the surface. The solid surface of the structure that Lin built is covered with about 50 nanometers – or 50 billionths of a meter – of gold. Each hole is about 1.6 microns – or 1.6 millionths of a meter – in diameter, and 1 micron deep. The holes are filled with quantum dots, which are nanoscale crystals with unique optical and semiconductor properties.

The interesting properties of the QDIP’s gold surface help to focus incoming light directly into the microscale holes and effectively concentrate that light in the pool of quantum dots. This concentration strengthens the interaction between the trapped light and the quantum dots, and in turn strengthens the dots’ ability to convert those photons into electrons. The end result is that Lin’s device creates an electric field up to 400 percent stronger than the raw energy that enters the QDIP.

2 pages of supplemental information

If you liked this article, please give it a quick review on Reddit, or StumbleUpon. Thanks

Supporting Advertising

Business Success
   How to Make Money    
Executive Jobs   
Paid Surveys

Thank You