Green Super Rice and reducing world hunger

For every one billion people added to the world’s population, 100 million tons of rice (paddy) need to be produced more annually –- with less land, less water, and less labor, in more efficient, environmentally-friendly production systems that are more resilient to climate change and also contribute less to greenhouse gas emissions.

Green Super Rice (GSR) is bred to perform well in the toughest conditions where the poorest farmers grow rice. GSR is a step away from reaching farmers thanks to a major project led by the Chinese Academy of Agricultural Sciences and the International Rice Research Institute (IRRI).


278 page proposed plan for the Global Rice Science Partnership, Sept 2010

Green Super Rice is actually a mix of more than 250 different potential rice varieties and hybrids variously adapted to difficult growing conditions such as drought and low inputs, including no pesticide and less fertilizer, and with rapid establishment rates to out-compete weeds, thus reducing the need for herbicides. More types of Green Super Rice that combine many of these traits are in the pipeline

Green Super Rice is already in the hands of national agricultural agencies in key rice-growing countries for testing and development.

The project has also identified drought-tolerant GSR lines with IR64 as the recurrent parent. For example, IR83142-B-19-B, a GSR line, performs better than Sahbhagi dhan under drought and zero-input (which means no fertilizers and no pesticides, and only one manual weeding) conditions.

In recent years, rice scientists have been forced to face the additional challenge of balancing food security with preserving natural resources and protecting the environment. For IRRI, the key is a doubly green revolution: the development and diffusion of conventional environment-friendly agricultural practices and innovative varieties such as GSR.

Insect-Resistant Genetically Modified Rice in China: From Research to Commercialization

Summary of potential key impacts. Based on these preliminary analyses of a subset
of expected GRiSP benefits, the following key impacts are forecast from the GRiSP:
By 2020:
* Expenditures on rice by those under the $1.25 (PPP) poverty line will decline by PPP
* $4.9 billion annually (holding consumption constant).
* Counting those reductions as income gains means that 72.2 million people would be
lifted above the $1.25 poverty line, reducing the global number of poor by 5%.
* As a result of increased availability and reduced prices, 40 million undernourished
people would reach caloric sufficiency in Asia, reducing hunger in the region by 7%.
Approximately 275 million tons of CO2 equivalent emissions will be averted.

By 2035:
* Expenditures on rice by those under the $1.25 (PPP) poverty line would decline by PPP $11.0 billion annually (holding consumption constant).
* Counting those reductions as income gains means that 150 million people would be
lifted above the $1.25 poverty line, reducing the global number of poor by 11%.
* As a result of increased availability and reduced prices, 62 million undernourished
people would reach caloric sufficiency in Asia, reducing hunger in the region by 12%.
* Nearly 1 billion tons of CO2 equivalent emissions will be averted.

By 2020, rice production will consistently meet demand as the world will be able to sustainably supply 85 million additional tons of paddy, leading to price reductions that can enable 40 million hungry people to attain caloric sufficiency.

By 2035, the world will be capable of producing an additional 170 million tons compared with 2010, matching the projected total demand of around 830 million tons of paddy. Africa, where demand growth is highest, will be able to feed itself in terms of rice production. As a result of GRiSP’s contributions to increased supplies and reduced rice prices, at least 60 million undernourished people can afford to reach caloric sufficiency, thus reducing hunger by more than 12% in target regions. A significant proportion of world rice production will better meet local food preferences. Nutritional enhancement will save millions of disability-adjusted life years, formerly lost because of vitamin A, iron, and zinc micronutrient deficiencies.

To achieve this vision of success, GRiSP has three main objectives, aligned with the
CGIAR strategic objectives (food for people, environment for people, and policy for people):

Objective 1: Increase rice productivity and value for the poor in the context of a changing climate through accelerated demand-driven development of improved varieties and other technologies along the value chain (addressed through themes 1, 2, 3, 4, and 6).

Objective 2: To foster more sustainable rice-based production systems that use natural resources more efficiently, are adapted to climate change and are ecologically resilient, and have reduced environmental externalities (addressed through themes 3, 4, and 6).

Objective 3: To improve the efficiency and equity of the rice sector through better and more accessible information, improved agricultural development and research policies, and strengthened delivery mechanisms (addressed through themes 5 and 6).

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks
netseer_tag_id = “2397”;

netseer_ad_width = “750”;

netseer_ad_height = “80”;

netseer_task = “ad”;

Featured articles

Ocean Floor Gold and Copper
   Ocean Floor Mining Company