New nickel-manganese-cobalt cathodes leading to much higher energy density batteries

GM licenses technology that could also make the batteries much cheaper GM has licensed battery-electrode materials developed at Argonne National Laboratory, a U.S. Department of Energy Lab. These materials, called mixed-metal oxides, could improve the safety and durability of car batteries and help double their energy-storage capacity, potentially leading to substantial costs savings by allowing GM to use a smaller battery pack. Doubling the energy density of the cathode does not double the amount of energy the battery pack as a whole can store. The storage capacity of the anodes has to keep pace, and the electrolytes have to be modified to work at higher voltages. Also, all three of these main components of the battery have to be engineered to work well together

The current model of the Volt uses lithium-ion batteries made with lithium-manganese spinel cathodes (“spinel” refers to the three-dimensional arrangement of atoms in the material). The Argonne patents that GM has licensed cover a cathode material that consists of lithium, nickel, manganese, and cobalt. The new material has such high energy density because it can operate at a higher voltage than current electrode materials and also store more lithium ions.

“This is probably the most capable cathode material that we have seen out there, and that’s the reason that we think it’s really critical that we get started working on this material now, so that we can get it on the road,” Lauckner says. “It’s going to take some years to further develop it and validate it. The idea is we want to get this on the road for the next generation of battery packs that come out.”

Several other companies are working with Argonne’s technology, including one, Envia, that is working with Argonne to combine advanced nickel-manganese-cobalt electrode materials with advanced silicon anode materials. This project, which is being funded by the Department of Energy’s Advanced Research Projects Agency for Energy, aims to produce batteries that store three times as much energy as today’s lithium-ion car batteries.

Envia Systems: High Energy Density Lithium Batteries

Envia Systems is using ARPA-E funding to develop lithium-ion batteries with the highest energy density in the world (over 400 Wh/kg vs ~150 Wh/kg current state of the art). This project will entail the development of advanced high capacity silicon-carbon nano-composite anodes and complementary high capacity cathodes. In addition, Envia Systems will develop processes to scale the production of both anode and cathode materials to high volumes. Scaling of the materials will involve reproducibility of materials not only with high performance but also with high quality and consistency.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

netseer_tag_id = “2397”;

netseer_ad_width = “750”;

netseer_ad_height = “80”;

netseer_task = “ad”;

Featured articles

Ocean Floor Gold and Copper
   Ocean Floor Mining Company

var MarketGidDate = new Date();
document.write(”);