Calcite cloaks a pink piece of paper

A piece of pink paper vanishes under a new invisibility cloak developed by MIT researchers.

Science news has a picture of a calcite cloak covering a pink piece of paper.

In principle, Barbastathis says, the same method could be used in real-life situations to conceal an object from view — and the only limitation on the size of the hidden object is the size of the calcite crystal that’s available. The team paid about $1,000 for the small crystal it used, he says, but much larger ones could be used to conceal much larger objects. (The largest known natural crystal of calcite measures 7 by 7 meters, or more than 21 feet across).

Synthetic calcite crystals could be made even larger.

The system is essentially two-dimensional, limiting the cloaking effect to a narrow range of angles; outside these angles, the cloaked object is quite visible. “We do have some ideas for how to make it fully three-dimensional,” says Barbastathis, the Singapore Research Professor of Optics and Professor of Mechanical Engineering. In addition, the team would like to eliminate the need for immersing the system in liquid and make it work in air.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Calcite cloaks a pink piece of paper

A piece of pink paper vanishes under a new invisibility cloak developed by MIT researchers.

Science news has a picture of a calcite cloak covering a pink piece of paper.

In principle, Barbastathis says, the same method could be used in real-life situations to conceal an object from view — and the only limitation on the size of the hidden object is the size of the calcite crystal that’s available. The team paid about $1,000 for the small crystal it used, he says, but much larger ones could be used to conceal much larger objects. (The largest known natural crystal of calcite measures 7 by 7 meters, or more than 21 feet across).

Synthetic calcite crystals could be made even larger.

The system is essentially two-dimensional, limiting the cloaking effect to a narrow range of angles; outside these angles, the cloaked object is quite visible. “We do have some ideas for how to make it fully three-dimensional,” says Barbastathis, the Singapore Research Professor of Optics and Professor of Mechanical Engineering. In addition, the team would like to eliminate the need for immersing the system in liquid and make it work in air.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks