Navy looks for desktop manufacturing of micro-robot swarm and a lot more

Navy technology solicitations

Desktop Manufacturing with Micro-robot Swarm

Develop a swarm of micro-robotic fabrication machines that will enable the manufacture of new materials and components. Address the major technical issues in developing these micro-robotic machines, the platform hardware, and the architecture for their communication and control.

A micro-robot swarm should be able to perform material synthesis and component assembly, concurrently. The micro-robots could be designed to perform basic operations such as pick and place, dispense liquids, print inks, remove material, join components, etc. These micro-robots should be able to move cooperatively within a workspace to achieve highly efficient synthesis and assembly. This behavior should be programmable, in particular, the micro-robotic behavior should be more adaptive as the ability for real-time in-situ sensing increases. The research focus is on the enabling manufacturing technology; however, as a proof-of-concept demonstration, a component of interest will be produced by this technology that highlights its unique capability. Examples of complex material systems of potential interest include but are not limited to: multi-functional materials, programmable materials, metamorphic materials, extreme materials, heterogeneous materials, synthetic materials, etc.

PHASE I: Develop proof-of-concept for manufacturing with distributed micro-robot swarm. Select any complex material system of interest to Navy/DoD, and, based on it, design and develop hardware for task-specific micro-robots and overall desktop manufacturing platform, and software for communication and control algorithms. Develop the architecture for a networked real-time embedded system, i.e., cyber-enabled manufacturing, to design, plan and operate this micro-factory for desktop manufacturing.

PHASE II: Build a micro-robot swarm system that is capable parallel processing in the production the selected complex material system. Demonstrate operation of micro-robotic swarm system in the manufacture of prototype complex material system of interest. Ensure accuracy in material placement, consistency in product quality, and reliability in production.

PHASE III: Transition the micro-robot swarm desktop manufacturing technology to critical military use and the civilian sector. Build marketable manufacturing units and demonstrate the fabrication of test-beds.

PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: A successful swarm micro-robot desktop manufacturing system would be useful for a variety of commercial applications. Such a manufacturing platform can be used to create super-strong components, ultra-lightweight materials, composite and hierarchical structures, complex part geometries, and/or multi-functional components.

Plasmonic Enhancement of Receiver Circuits for Energy Harvesting

Plasmonic field enhancement is now a viable technological tool. Proposed rectenna array solutions should be low cost and be able to transduce beamed infrared power to electric energy and to store the energy in a capacitor or in a battery. Performance metrics include a minimum of 5% conversion efficiency in a 1cm x 1cm array.

Advanced Thin-film Battery Development

Develop novel light weight high efficiency thin-film batteries for use in Unmanned Autonomous Vehicles (UAVs), remote sensors, expendables, energy harvesting and in “wearable” flexible electronics.

At the end of Phase II, demonstrate the minimum performance targets:

– Capacity: greater than 10mA.Hr/cm2
– Internal leakage On Charging: less than 10uA/cm2
– Demonstrated Shelf Life: greater than 6 months (or longer)
– Cycle Life: greater than 500 cycles at 80% of capacity, greater than 1000 cycles at 20% of capacity

Visible Electro-Optical (EO) System and LIDAR Fusion for Low Cost Perception by Autonomous Ground Vehicles

Develop a low-cost perception/classification system for the joint exploitation of LIDAR and passive multi-spectral data obtained across the visible spectrum employing self-calibrating algorithms for use in autonomous ground vehicles.

PHASE I: Design a concept for a low cost (< $30,000 at 1000 unit annual production rate) modular, self-calibrating fused LIDAR/EO perception system for an autonomous ground vehicle. The system shall be able to provide perception about the environment sufficient so that an autonomous vehicle can perform mission-level adaptation in response to real-world contingencies in a multiple terrain types and environments without human intervention. PHASE III: Demonstrate a robust capability (without the use of GPS) of an autonomous unmanned ground vehicle using a “low cost” sensor suite composed of fused LIDAR and visible EO sensors conducting a resupply mission in a militarily relevant manner while executing complex and doctrinally correct behaviors. Affordable High Strength Mo-Si-B Alloys for High Temperature Applications

Mature Mo-Si-B material production methodology for Aerospace use. In Phase 1 the process of maturation will optimally include the demonstration of medium scale material production, material lots of 1 to 10 pounds, and the assessment of the benefit of extrusion on the mechanical properties of Mo-Si-B alloys.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

About The Author