Higgs Boson has less than 5% probability now across energy range – the leading alternate theories are Technicolor

CERN scientists declared that over the entire range of energy the Collider had explored—from 145 to 466 billion electron volts—the Higgs boson is excluded as a possibility with a 95% probability.

The probability of nonexistence is not overwhelming—there is still a 5% chance that the Higgs is hiding somewhere within this energy range. And, more importantly, the lower energy range from 114 to just under 145 billion electron volts, a region of energy that Fermilab has determined, through earlier experiments, may harbor the Higgs, has not been ruled out. But the Higgs is quickly running out of places to hide. Lower energy levels have been accessible to smaller accelerators, such as the Tevatron at Fermilab and the LEP—the LHC’s predecessor at CERN—and neither collider had found it. Perhaps the Higgs does not exist at all.

A theory called Technicolor, within which the primeval symmetry of our universe can be broken through a different mechanism than the action of the elusive Higgs. But to prove the validity of the Technicolor theory may require an energy level that would dwarf that available to the LHC—at an equally astronomical cost.

Technicolor theories are models of physics beyond the standard model that address electroweak symmetry breaking, the mechanism through which elementary particles acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the “color” theory of the strong nuclear force, which inspired their name.

Instead of introducing elementary Higgs bosons, technicolor models hide electroweak symmetry and generate masses for the W and Z bosons through the dynamics of new gauge interactions. Although asymptotically free at very high energies, these interactions must become strong and confining (and hence unobservable) at lower energies that have been experimentally probed. This dynamical approach is natural and avoids the hierarchy problem of the Standard Model.

In order to produce quark and lepton masses, technicolor has to be “extended” by additional gauge interactions. Particularly when modelled on QCD, extended technicolor is challenged by experimental constraints on flavor-changing neutral current and precision electroweak measurements. It is not known what is the extended technicolor dynamics.

Technicolor particles could be in the range of existing reactors

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks