Design of a Polymer–Carbon Nanohybrid Junction by Interface Modeling for Efficient Printed Transistors

ACS Nano – Molecularly hybridized materials composed of polymer semiconductors (PSCs) and single-walled carbon nanotubes (SWNTs) may provide a new way to exploit an advantageous combination of semiconductors, which yields electrical properties that are not available in a single-component system. We demonstrate for the first time high-performance inkjet-printed hybrid thin film transistors with an electrically engineered heterostructure by using specially designed PSCs and semiconducting SWNTs (sc-SWNTs) whose system achieved a high mobility of 0.23 cm2 V–1 s–1, no Von shift, and a low off-current. PSCs were designed by calculation of the density of states of the backbone structure, which was related to charge transfer. The sc-SWNTs were prepared by a single cascade of the density-induced separation method. We also revealed that the binding energy between PSCs and sc-SWNTs was strongly affected by the side-chain length of PSCs, leading to the formation of a homogeneous nanohybrid film. The understanding of electrostatic interactions in the heterostructure and experimental results suggests criteria for the design of nanohybrid heterostructures.

11 pages of supporting information

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

About The Author