On the verge of testing human long term memory device and seizure prevention

Technology Review has an update on the work of Theodore Berger. He is a biomedical engineer and neuroscientist at the University of Southern California in Los Angeles, envisions a day in the not too distant future when a patient with severe memory loss can get help from an electronic implant. In people whose brains have suffered damage from Alzheimer’s, stroke, or injury, disrupted neuronal networks often prevent long-term memories from forming. For more than two decades, Berger has designed silicon chips to mimic the signal processing that those neurons do when they’re functioning properly—the work that allows us to recall experiences and knowledge for more than a minute. Ultimately, Berger wants to restore the ability to create long-term memories by implanting chips like these in the brain.

They are on the verge of human trials.

Within the next two years, Berger and his colleagues hope to implant an actual memory prosthesis in animals. They also want to show that their hippocampal chips can form long-term memories in many different behavioral situations.

Berger and his colleagues are planning human studies. He is collaborating with clinicians at his university who are testing the use of electrodes implanted on each side of the hippocampus to detect and prevent seizures in patients with severe epilepsy. If the project moves forward as envisioned, Berger’s group will piggyback on the trial to look for memory codes in those patients’ brains.

Nextbigfuture covered his idea of piecemeal replacement of the brain

Professor Berger was the first to replace the function of a hippocampus in a rat brain with a chip. He develops “neuron–silicon interface” technology using silicon-based, multisite electrode arrays and tissue culture methods for implantation of hardware models into the brain to replace damaged or dysfunctional nerve tissue.

“We are living longer and longer, and so more and more of neuro diseases of the brain, degenerative or accidental damage to the brain, are going to be seen and must be dealt with. And so having a strategy where we think about which brain parts can be replaced, in the context of which ones are damaged more often is just a wise thing to do.”

“There are several parts in the brain that I consider to be ready for this next-generation analysis, and this will allow us to create a mathematical model of how some of the functions work, and we’ll be able to reproduce those in mathematical models, and we’ll be able to reproduce those in microchip form.” says Dr. Berger.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks