April 25, 2013

Polyacrylonitrile nanofibers 1750 MPa strong and 605 MPa tough

University of Nebraska-Lincoln materials engineers have developed a structural nanofiber that is both strong and tough, a discovery that could transform everything from airplanes and bridges to body armor and bicycles.

Dzenis and colleagues developed an exceptionally thin polyacrilonitrile nanofiber, a type of synthetic polymer related to acrylic, using a technique called electrospinning. The process involves applying high voltage to a polymer solution until a small jet of liquid ejects, resulting in a continuous length of nanofiber.

They discovered that by making the nanofiber thinner than had been done before, it became not only stronger, as was expected, but also tougher.

Dzenis suggested that toughness comes from the nanofibers' low crystallinity. In other words, it has many areas that are structurally unorganized. These amorphous regions allow the molecular chains to slip around more, giving them the ability to absorb more energy.

ACS Nano - Simultaneously Strong and Tough Ultrafine Continuous Nanofibers

If structural materials were tougher, one could make products more lightweight and still be very safe," Dzenis said.

Body armor, such as bulletproof vests, also requires a material that's both strong and tough. "To stop the bullet, you need the material to be able to absorb energy before failure, and that's what our nanofibers will do," he said.

Strength of structural materials and fibers is usually increased at the expense of strain at failure and toughness. Recent experimental studies have demonstrated improvements in modulus and strength of electrospun polymer nanofibers with reduction of their diameter. Nanofiber toughness has not been analyzed; however, from the classical materials property trade-off, one can expect it to decrease. Here, on the basis of a comprehensive analysis of long (5–10 mm) individual polyacrylonitrile nanofibers, we show that nanofiber toughness also dramatically improves. Reduction of fiber diameter from 2.8 μm to 100 nm resulted in simultaneous increases in elastic modulus from 0.36 to 48 GPa, true strength from 15 to 1750 MPa, and toughness from 0.25 to 605 MPa with the largest increases recorded for the ultrafine nanofibers smaller than 250 nm. The observed size effects showed no sign of saturation. Structural investigations and comparisons with mechanical behavior of annealed nanofibers allowed us to attribute ultrahigh ductility (average failure strain stayed over 50%) and toughness to low nanofiber crystallinity resulting from rapid solidification of ultrafine electrospun jets. Demonstrated superior mechanical performance coupled with the unique macro-nano nature of continuous nanofibers makes them readily available for macroscopic materials and composites that can be used in safety-critical applications. The proposed mechanism of simultaneously high strength, modulus, and toughness challenges the prevailing 50 year old paradigm of high-performance polymer fiber development calling for high polymer crystallinity and may have broad implications in fiber science and technology.

6 pages of supplemental material

Prior Work on other materials by the same group

ACS Nano - Extraordinary Improvement of the Graphitic Structure of Continuous Carbon Nanofibers Templated with Double Wall Carbon Nanotubes

Carbon nanotubes are being widely studied as a reinforcing element in high-performance composites and fibers at high volume fractions. However, problems with nanotube processing, alignment, and non-optimal stress transfer between the nanotubes and surrounding matrix have so far prevented full utilization of their superb mechanical properties in composites. Here, we present an alternative use of carbon nanotubes, at a very small concentration, as a templating agent for the formation of graphitic structure in fibers. Continuous carbon nanofibers (CNF) were manufactured by electrospinning from polyacrylonitrile (PAN) with 1.2% of double wall nanotubes (DWNT). Nanofibers were oxidized and carbonized at temperatures from 600 °C to 1850 °C. Structural analyses revealed significant improvements in graphitic structure and crystal orientation in the templated CNFs, with the largest improvements observed at lower carbonization temperatures. In situ pull-out experiments showed good interfacial bonding between the DWNT bundles and the surrounding templated carbon matrix. Molecular Dynamics (MD) simulations of templated carbonization confirmed oriented graphitic growth and provided insight into mechanisms of carbonization initiation. The obtained results indicate that global templating of the graphitic structure in fine CNFs can be achieved at very small concentrations of well-dispersed DWNTs. The outcomes reveal a simple and inexpensive route to manufacture continuous CNFs with improved structure and properties for a variety of mechanical and functional applications. The demonstrated improvement of graphitic order at low carbonization temperatures in the absence of stretch shows potential as a promising new manufacturing technology for next generation carbon fibers.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Форма для связи


Email *

Message *