Silicon Photonics breakthroughs could extend Moore’s law for many years

A pair of breakthroughs in the field of silicon photonics by researchers at the University of Colorado Boulder, the Massachusetts Institute of Technology and Micron Technology Inc. could allow for the trajectory of exponential improvement in microprocessors that began nearly half a century ago—known as Moore’s Law—to continue well into the future, allowing for increasingly faster electronics, from supercomputers to laptops to smartphones.

The research team, led by CU-Boulder researcher Milos Popovic, an assistant professor of electrical, computer and energy engineering, developed a new technique that allows microprocessors to use light, instead of electrical wires, to communicate with transistors on a single chip, a system that could lead to extremely energy-efficient computing and a continued skyrocketing of computing speed into the future.

Popovic and his colleagues created two different optical modulators—structures that detect electrical signals and translate them into optical waves—that can be fabricated within the same processes already used in industry to create today’s state-of-the-art electronic microprocessors.

“In order to convince the semiconductor industry to incorporate photonics into microelectronics you need to make it so that the billions of dollars of existing infrastructure does not need to be wiped out and redone,” Popovic said.

Last year, Popovic collaborated with scientists at MIT to show, for the first time, that such integration is possible. “We are building photonics inside the exact same process that they build microelectronics in,” Popovic said. “We use this fabrication process and instead of making just electrical circuits, we make photonics next to the electrical circuits so they can talk to each other.”

In two papers published last month in Optics Letters with CU-Boulder postdoctoral researcher Jeffrey Shainline as lead author, the research team refined their original photonic-electronic chip further, detailing how the crucial optical modulator, which encodes data on streams of light, could be improved to become more energy efficient. That optical modulator is compatible with a manufacturing process—known as Silicon-on-Insulator Complementary Metal-Oxide-Semiconductor, or SOI CMOS—used to create state-of-the-art multicore microprocessors such as the IBM Power7 and Cell, which is used in the Sony PlayStation 3.

The researchers also detailed a second type of optical modulator that could be used in a different chip-manufacturing process, called bulk CMOS, which is used to make memory chips and the majority of the world’s high-end microprocessors.

Vladimir Stojanovic, who leads one of the MIT teams collaborating on the project and who is the lead principal investigator for the overall research program, said the group’s work on optical modulators is a significant step forward.

“On top of the energy-efficiency and bandwidth-density advantages of silicon-photonics over electrical wires, photonics integrated into CMOS processes with no process changes provides enormous cost-benefits and advantage over traditional photonic systems,” Stojanovic said.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks