DARPA N-ZERO “Asleep-Yet-Aware” Electronics Could lower power usage of Remote Wireless Sensors by 1000 times

DARPA wants to make sensors phenomenally more efficient in how they draw power when not actually sensing something of interest. The goal is to use less than 10 nanowatts (nW) during the sensor’s asleep-yet-aware phase—an energy drawdown roughly equivalent to the self-discharge (battery discharge during storage) of a typical watch battery, and at least 1,000 times lower than state-of-the-art sensors. Specifically, N-ZERO seeks to extend unattended sensor lifetime from weeks to years, cut costs of maintenance and the need for redeployments. Alternatively, N-ZERO could also reduce battery size for a typical ground-based sensor by a factor of 20 or more while still keeping its current operational lifetime.

State-of-the-art military sensors today rely on “active electronics” to detect vibration, light, sound or other signals. That means they constantly consume power, with much of that power and time spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months when operating from state-of-the-art batteries, and has slowed the development of new sensor technologies and capabilities. Moreover, the chronic need to redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.

DARPA’s new Near Zero Power RF and Sensor Operations (N-ZERO) program seeks to overcome the power limitations of persistent sensing by developing wireless, event-driven sensing capabilities that would allow physical, electromagnetic and other sensors to remain dormant—effectively asleep yet aware—until an event of interest awakens them. To achieve these goals, the program intends to develop underlying technologies to continuously and passively monitor the environment and activate an electronic circuit only upon detection of a specific signature, such as the presence of a particular vehicle type or radio communications protocol. N-ZERO seeks to exploit the energy in signal signatures to detect and recognize attention-worthy events while rejecting noise and interference.

DARPA’s new Near Zero Power RF and Sensor Operations (N-ZERO) program aims to develop wireless, event-driven sensing capabilities that would allow physical, electromagnetic and other sensors to remain dormant—effectively asleep yet aware—until an event of interest awakens them. N-ZERO’s persistent sensing capability could increase mission life, reduce battery size and reduce the maintenance costs of unattended wireless sensors. This image illustrates how N-ZERO-equipped sensors could cut reliance on active power in various environments including critical infrastructure protection, threat detection in an urban area, forest fire detection and perimeter monitoring. The image highlights critical infrastructure in particular to show that these wireless sensors could help identify cracks and prevent further serious damage or danger. The wireless sensors could then gather the specific data and trigger a separate processor to analyze the data and take appropriate action.

DARPA N-ZERO “Asleep-Yet-Aware” Electronics Could lower power usage of Remote Wireless Sensors by 1000 times

DARPA wants to make sensors phenomenally more efficient in how they draw power when not actually sensing something of interest. The goal is to use less than 10 nanowatts (nW) during the sensor’s asleep-yet-aware phase—an energy drawdown roughly equivalent to the self-discharge (battery discharge during storage) of a typical watch battery, and at least 1,000 times lower than state-of-the-art sensors. Specifically, N-ZERO seeks to extend unattended sensor lifetime from weeks to years, cut costs of maintenance and the need for redeployments. Alternatively, N-ZERO could also reduce battery size for a typical ground-based sensor by a factor of 20 or more while still keeping its current operational lifetime.

State-of-the-art military sensors today rely on “active electronics” to detect vibration, light, sound or other signals. That means they constantly consume power, with much of that power and time spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months when operating from state-of-the-art batteries, and has slowed the development of new sensor technologies and capabilities. Moreover, the chronic need to redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.

DARPA’s new Near Zero Power RF and Sensor Operations (N-ZERO) program seeks to overcome the power limitations of persistent sensing by developing wireless, event-driven sensing capabilities that would allow physical, electromagnetic and other sensors to remain dormant—effectively asleep yet aware—until an event of interest awakens them. To achieve these goals, the program intends to develop underlying technologies to continuously and passively monitor the environment and activate an electronic circuit only upon detection of a specific signature, such as the presence of a particular vehicle type or radio communications protocol. N-ZERO seeks to exploit the energy in signal signatures to detect and recognize attention-worthy events while rejecting noise and interference.

DARPA’s new Near Zero Power RF and Sensor Operations (N-ZERO) program aims to develop wireless, event-driven sensing capabilities that would allow physical, electromagnetic and other sensors to remain dormant—effectively asleep yet aware—until an event of interest awakens them. N-ZERO’s persistent sensing capability could increase mission life, reduce battery size and reduce the maintenance costs of unattended wireless sensors. This image illustrates how N-ZERO-equipped sensors could cut reliance on active power in various environments including critical infrastructure protection, threat detection in an urban area, forest fire detection and perimeter monitoring. The image highlights critical infrastructure in particular to show that these wireless sensors could help identify cracks and prevent further serious damage or danger. The wireless sensors could then gather the specific data and trigger a separate processor to analyze the data and take appropriate action.