Water can freeze at 105 to 151 degrees celsius inside of carbon nanotubes and can enable ice wires for conducting protons

A team at MIT has found a completely unexpected set of changes: Inside the tiniest of spaces — in carbon nanotubes whose inner dimensions are not much bigger than a few water molecules — water can freeze solid even at high temperatures that would normally set it boiling.

The discovery illustrates how even very familiar materials can drastically change their behavior when trapped inside structures measured in nanometers, or billionths of a meter. And the finding might lead to new applications — such as, essentially, ice-filled wires — that take advantage of the unique electrical and thermal properties of ice while remaining stable at room temperature.

“If you confine a fluid to a nanocavity, you can actually distort its phase behavior,” Strano says, referring to how and when the substance changes between solid, liquid, and gas phases. Such effects were expected, but the enormous magnitude of the change, and its direction (raising rather than lowering the freezing point), were a complete surprise: In one of the team’s tests, the water solidified at a temperature of 105 C or more. (The exact temperature is hard to determine, but 105 C was considered the minimum value in this test; the actual temperature could have been as high as 151 C.)

Water’s behavior changes inside the tiny carbon nanotubes — structures the shape of a soda straw, made entirely of carbon atoms but only a few nanometers in diameter — depends crucially on the exact diameter of the tubes. “These are really the smallest pipes you could think of,” Strano says. In the experiments, the nanotubes were left open at both ends, with reservoirs of water at each opening.

Even the difference between nanotubes 1.05 nanometers and 1.06 nanometers across made a difference of tens of degrees in the apparent freezing point, the researchers found. Such extreme differences were completely unexpected. “All bets are off when you get really small,” Strano says. “It’s really an unexplored space.”

Strano and his team used highly sensitive imaging systems, using a technique called vibrational spectroscopy, that could track the movement of water inside the nanotubes, thus making its behavior subject to detailed measurement for the first time.

The team can detect not only the presence of water in the tube, but also its phase, he says: “We can tell if it’s vapor or liquid, and we can tell if it’s in a stiff phase.” While the water definitely goes into a solid phase, the team avoids calling it “ice” because that term implies a certain kind of crystalline structure, which they haven’t yet been able to show conclusively exists in these confined spaces. “It’s not necessarily ice, but it’s an ice-like phase,” Strano says.

Because this solid water doesn’t melt until well above the normal boiling point of water, it should remain perfectly stable indefinitely under room-temperature conditions. That makes it potentially a useful material for a variety of possible applications, he says. For example, it should be possible to make “ice wires” that would be among the best carriers known for protons, because water conducts protons at least 10 times more readily than typical conductive materials. “This gives us very stable water wires, at room temperature,” he says.

Evidence of filling and phase transition of water inside carbon nanotubes (CNTs).

Nature Nanotechnology – Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes

Fluid phase transitions inside single, isolated carbon nanotubes are predicted to deviate substantially from classical thermodynamics. This behaviour enables the study of ice nanotubes and the exploration of their potential applications. Here we report measurements of the phase boundaries of water confined within six isolated carbon nanotubes of different diameters (1.05, 1.06, 1.15, 1.24, 1.44 and 1.52 nm) using Raman spectroscopy. The results reveal an exquisite sensitivity to diameter and substantially larger temperature elevations of the freezing transition (by as much as 100 °C) than have been theoretically predicted. Dynamic water filling and reversible freezing transitions were marked by 2–5 cm−1 shifts in the radial breathing mode frequency, revealing reversible melting bracketed to 105–151 °C and 87–117 °C for 1.05 and 1.06 nm single-walled carbon nanotubes, respectively. Near-ambient phase changes were observed for 1.44 and 1.52 nm nanotubes, bracketed between 15–49 °C and 3–30 °C, respectively, whereas the depression of the freezing point was observed for the 1.15 nm nanotube between −35 and 10 °C. We also find that the interior aqueous phase reversibly decreases the axial thermal conductivity of the nanotube by as much as 500%, allowing digital control of the heat flux.

25 pages of supplemental material

SOURCES- MIT News, Nature Nanotechnology

About The Author