Stephen J. Pennycook, leader of Oak Ridge’s electron microscopy group, said that confocal microscopy revolutionized the biological sciences by enabling depth sections to be reconstructed into 3-D images of cells and other biological structures. Unless techniques such as near-field imaging or multiphoton excitation are employed, however, its resolution is limited to approximately 150 nm laterally and 400 nm in depth. In contrast, third-order aberration-corrected scanning transmission electron microscopy offers a lateral resolution of less than 0.1 nm and a depth resolution on the order of 6 nm.
Pennycook said that the next-generation, fifth-order correctors are expected to be available next year. The lab will acquire models from Nion and from Corrected Electron Optical Systems GmbH of Heidelberg, Germany, for use on new microscopes from Nion and from FEI Co. of Hillsboro, Ore. The systems could im-prove the lateral resolution by a factor of two and depth resolution by a factor of four.

Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.
Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.
A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts. He is open to public speaking and advising engagements.