nano-etched cavity makes LEDs 7 times brighter

Semiconductor LEDs are used increasingly in displays and many other applications, in part because they can efficiently produce light across a broad spectrum, from near-infrared to the ultraviolet. However, they typically emit only about two percent of the light in the desired direction: perpendicular to the diode surface. Far more light skims uselessly below the surface of the LED, because of the extreme mismatch in refraction between air and the semiconductor. The NIST nanostructured cavity boosts useful LED emission to about 41 percent and may be cheaper and more effective for some applications than conventional post-processing LED shaping and packaging methods that attempt to redirect light.

The researchers experimented with different numbers and dimensions of grooves. The brightest output was attained with 10 grooves, each about 240 nanometers (nm) wide and 150 nm deep, and spaced 40 nm apart. The team spent several years developing the design principles and perfecting the manufacturing technique. The principles of the method are transferable to other LED materials and emission wavelengths, as well as other processing techniques, such as commercial photolithography, according to lead author Mark Su.