Better Self-assembly from UNC

Self-assembly advance able to make pore (0.1 nm-100nm) and film sizes as desired. The finding, reported in the Aug. 18 issue of Science, describes a new mechanism by which complex patterns are generated at the nanoscale – 0.1 to 100 nanometers in size, a nanometer being a billionth of a meter – without any need for expensive processes such as lithography.

Anthraquinone molecules form chains of molecules that weave themselves into a sheet of hexagons on a polished copper surface.

In the future, Pawin and Bartels plan on investigating how chemical modifications of anthraquinone can produce novel patterns. “In addition, we would like to form the hexagonal network at higher temperatures and be able to control the size of the hexagons,” Pawin said. “We also want to extend our research to include surfaces other than copper and determine if there are molecules similar to anthraquinone that assemble spontaneously into sheets on them.”