Applying variational principles may allow streamlining of protein folding calculations from trillions of steps to hundreds. A variational principle is a principle in physics which is expressed in terms of the calculus of variations. The new application of the old physics method is faster because it allows them to spend less time calculating motions of molecules stuck in quasi-stable intermediate steps along the folding process. The intermediate steps account for vast amounts of wasted computation time in traditional, step-by-step simulations. Determining the structure and folding of proteins is important to control the functions that they exhibit. Mastery of proteins could lead to molecular nanotechnology.
A pair of physicists at MIT have found a class of molecules that attach to nanotubes without damaging them. Instead of simply grabbing onto the nanotubes, the molecules latch onto the tubes and break some bonds in the nanotube walls. As a result, the sum total of bonds is the same before and after the handle is attached, keeping the nanotube’s original characteristics relatively intact.

Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.
Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.
A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts. He is open to public speaking and advising engagements.