Picture of some of the small flyers.

The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.

The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use ">
Picture of some of the small flyers.

The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.

The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use ">
Picture of some of the small flyers.

The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.

The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use ">
Picture of some of the small flyers.

The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.

The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use ">
Picture of some of the small flyers.

The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.

The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use ">
Picture of some of the small flyers.

The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.

The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use ">

More on an emergency sunshade to counter global warming

Roger Angel’s plan would be to launch a constellation of trillions of small free-flying spacecraft a million miles above Earth into an orbit aligned with the sun, called the L-1 orbit.


Picture of some of the small flyers.

The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth’s atmosphere.

The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use “MEMS” technology mirrors as tiny sails that tilt to hold the flyers position in the orbiting constellation. The flyer’s transparency and steering mechanism prevent it from being blown away by radiation pressure. Radiation pressure is the pressure from the sun’s light itself.

The total mass of all the fliers making up the space sunshade structure would be 20 million tons. At $10,000 a pound, conventional chemical rocket launch is prohibitively expensive. Angel proposes using a cheaper way developed by Sandia National Laboratories for electromagnetic space launchers, which could bring cost down to as little as $20 a pound.

The sunshade could be deployed by total 20 electromagnetic launchers launching a stack of flyers every 5 minutes for 10 years.