Comparing modern skeptism about molecular nanotechnology with FPGA in 1957

Chris Pheonix has a though experiment of taking an FPGA chip back in time to 1957. He indicates the problems that would encountered trying to get the engineers of the day to accept that the FPGA could work and to believe in it enough to invest the time, money and effort into making the connections …

Read more

New methods for DNA nanotechnology structures

I think the main benefit for these new methods is to extend the capabilities of these DNA nanotechnology systems along with DNA origami, Ned Seemans DNA systems, rotaxane molecular chemistry, other molecular chemistry, laser/electric manipulation, synthetic biology and advanced self assembly. More tools and methods in our rapidly growing molecular manipulation toolbox. Scientists from Duke …

Read more

Foolproof Quantum Cryptography

Adding decoy photons to quantum-cryptographic signals should finally make them “unconditionally secure.” Researchers at Toshiba, in Cambridge, U.K., have found a way to plug a security hole that currently limits how far and how fast encryption keys can be distributed using existing quantum-cryptographic systems. The developments could broaden the commercial appeal of “unconditionally secure” quantum …

Read more

New Nanocoating breakthrough in non-Reflective material

A team of researchers from Rensselaer Polytechnic Institute has created the world’s first material that reflects virtually no light. Reporting in the March issue of Nature Photonics, they describe an optical coating made from the material that enables vastly improved control over the basic properties of light. The research could open the door to much …

Read more

Path to detailed wiring diagram of the brain

Researchers at the Salk Institute for Biological Studies have jumped what many believe to be a major hurdle to preparing a detailed wiring diagram of the brain: identifying all of the connections to a single neuron. The researchers describe how they modified the deadly rabies virus, turning it into a tool that can cross the …

Read more

One atom thick graphene membranes

Researchers have used the world’s thinnest material to create a new type of technology, which could be used to make super-fast electronic components and speed up the development of drugs. It’s believed this super-small graphene structure can be used to sieve gases, make ultra-fast electronic switches and image individual molecules with unprecedented accuracy. Now an …

Read more

Smallest transistor made from graphene

Professor Andre Geim and Dr Kostya Novoselov from The School of Physics and Astronomy at The University of Manchester, reveal details of transistors that are only one atom thick and less than 50 atoms wide, in the March issue of Nature Materials. Professor Geim and colleagues have shown for the first time that graphene remains …

Read more