Corrected: Focus fusion does not have agreement with CMEF of Sweden

Previous outdated and incorrect: Focus Fusion has received funding of $600,000 with phased additional payments up to $10 million.

Correction: That funding situation did not happen and this is a link to the current funding situation

Lawrenceville Plasma Physics, Inc. is raising capital from accredited investors (those with more than $200,000 in income or $1,000,000 in assets) to finance a two-year experimental effort in New Jersey to demonstrate the scientific feasibility of focus fusion. The total cost of the experiment is $750,000, of which $200,000 has already been raised and an additional $100,000 has been pledged.

UPDATE: [From a reader who is a close follower of Focus Fusion and now confirmed]

Re: CMEF, Eric responded, “This is based on years-out-of-date info. The $600,000 never actually materialized, but LPP is again at the point where we think we will have $ in hand very soon. But this time we will not say we have it until the bank tells us we do.”

The most recent news postings are:
LPP has performed some computer simulations of their process.

Highly repeatable experiments have been performed

In a presentation to the Seventh Symposium on Current Trends in International Fusion research, held a year ago, but recently released on the Web, Dr. Jan Brzosko reported that in 500 shots a DPF functioning at a peak current of 0.95 MA had neutron yields that had a standard deviation of only about 15%.

A place for downloading animations and images.

Focus fusion in Discover Magazine June 2008 (item #2).

It may sound too good to be true, but the technology, called focus fusion, is based on real physics experiments. Focus fusion is initiated when a pulse of electricity is discharged through a hydrogen-boron gas across two nesting cylindrical electrodes, transforming the gas into a thin sheath of hot, electrically conducting plasma. This sheath travels to the end of the inner electrode, where the magnetic fields produced by the currents pinch and twist the plasma into a tiny, dense ball. As the magnetic fields start to decay, they cause a beam of electrons to flow in one direction and a beam of positive ions (atoms that have lost electrons) to flow in the opposite direction. The electron beam heats the plasma ball, igniting fusion reactions between the hydrogen and boron; these reactions pump more heat and charged particles into the plasma. The energy in the ion beam can be directly converted to electricity—no need for conventional turbines and generators. Part of this electricity powers the next pulse, and the rest is net output.

A focus fusion reactor could be built for just $300,000, says Lerner, president of Lawrenceville Plasma Physics in New Jersey. But huge technical hurdles remain. These include increasing the density of the plasma so the fusion reaction will be more intense. (Conventional fusion experiments do not come close to the temperatures and densities needed for efficient hydrogen-boron fusion.) Still, the payoff could be huge: While mainstream fusion research programs are still decades from fruition, Lerner claims he requires just $750,000 in funding and two years of work to prove his process generates more energy than it consumes. “The next experiment is aimed at achieving higher density, higher magnetic field, and higher efficiency,” he says. “We believe it will succeed.”

From the focus fusion FAQ:

It is like a particle accelerator run in reverse. Such an electrical transformation can be highly efficient, probably around 80-90%. What is most important is that it is exceedingly cheap and compact. The whole apparatus of steam turbine and electrical generator are eliminated. A 20MW focus fusion reactor may cost around $500,000 and produce electricity for 1/20th of a cent per kWh. This is a hundred times less than current electric costs. Fuel costs will be negligible because a 20MW plant will require only twenty pounds of fuel a year.

UPDATE: [emails from a reader who has been following Focus fusion closely]
the power would be at about 0.2¢/kwh, not 1/20¢ (0.05¢). The generators would be from 5-20MW, depending on pulse rate (330 – 1320/sec.) The energy “profit” is actually from harvesting as current (via thousands of foil layers in the containment shell) the ~40% of output which occurs as X-rays. The alpha-beam pulse goes back into the capacitor bank to fire the next “shot”, and the electron beam reheats the plasma.

From the multi-slide story board of how focus fusion works

1. The plasma sheet, carrying the current, is formed between the anode and cathode. It moves down the anode due to the interaction of the current and its magnetic field.

2. The plasma sheet bends inwards to the hole in the anode.
Plasma filaments are formed in counter rotating pairs.

3. The plasma sheet and filaments contract towards the center. The focus forms.
The filament pairs merge like a zipper. Energy is transferred from the outside to the central region

4. The plasma sheet and filaments continue contracting into the center

5. A rotating plasma vortex is formed in the center, carrying all the current

6. In the central vortex the filaments have formed one single rotating filament.

7. The filament forms a tight plasma helix

8. the helix starts to kink

9. And it becomes unstable and …

10. …knots itself up into a rotating plasmoid composed of plasma filaments.
The plasmoid, only microns across, contains the full energy that was fed into the device, in the ideal case

11. The magnetic field of the plasmoid causes it to shrink

12. The shrinking plasmoid rotates.
The electron beam that the plasmoid generates heats it up.

13. The temperature becomes high enough for some colliding protons and boron nuclei to overcome their electric repulsion

14. Protons and boron nuclei fuse and create unstable carbon-12 nuclei

15. The nucleus breaks up to form helium nuclei (alpha particles).
Energy is released as the kinetic energy of the alpha particles

16. The fast alpha particles heat the plasma and the fusion reactions occur faster and faster

17. An electric field creates a beam of fast ions (nuclei) that carry most of the fusion energy (shown in blue). An electron beam (shown in red) goes in the opposite direction

18. The plasmoid is evacuated by the beams

19. The energy in the ion beam is collected by a solenoid.
This direct conversion to electricity is very efficient and economical

Technical background on focus fusion.

Focus Fusion operates using a dense plasma focus (DPF) with hydrogen-born fuel. The fuel is in the form of decaborane (H14B10), a solid at room temperature which sublimates a gas when heated to moderate temperatures of around 100 C. As in any fusion reaction, when the hydrogen nuclei (protons) and boron-11 nuclei collide at high enough velocities, a nuclear reaction occurs. In this case, three helium nuclei (also called alpha particles) are produced, which stream off in a concentrated beam, confined by powerful magnetic field produced by the plasma itself.

Focus fusion is one of several non-Tokomak approaches to nuclear fusion

Time to Small Cost to Achieve Large scale chance
Concept Description Scale net energy Net Energy after small success Funded?

Plasma Focus 6 years $1M+ Sales X-scan 80% Y, $1.9m
Focus fusion website
Focus fusion US patent application
Working on a funded experiment with Chile 2006-2010

Bussard IEC Fusion 3-5 years $200 million 90% Y, $2m
My intro to Bussard fusion and update on prototype work

Tri-alpha Energy aka 8 years $75 million 60% Y, $50m
Colliding Beam fusion aka
Field Reversed Configuration
My review of the academic research before the funded stealth project

General Fusion aka 3-6 years $10-30 million 60% Y, $2m
Magnetized target fusion
Steam generated shock wave into spinning liquid metal

Multi-pole Ion beam
version of Bussard IEC 3-5 years $200 million 90% N
FP generation MIX IEC fusion

Koloc Spherical Plasma 10 years $25 million 80% N (self)
Attempt to create stable ball lightning plasma balls
In 2004, trying to generate 30-40cm plasma spheres

5 thoughts on “Corrected: Focus fusion does not have agreement with CMEF of Sweden”

Comments are closed.