Verdict Positive for Inertial Electrostatic Fusion

Information on the Inertial Electrostatic Fusion project by EMC2 Fusion Inc which is carrying on the work of the late Robert Bussard

Alan Boyle reports that the review of the WB7 experiment is done and the verdict is positive.

The team has turned in its final report, and it’s been double-checked by a peer-review panel, Dr Nebel [research team lead] told me today. Although he couldn’t go into the details, he said the verdict was positive.

“There’s nothing in there that suggests this will not work,” Nebel said. “That’s a very different statement from saying that it will work.”

By and large, the EMC2 results fit Bussard’s theoretical predictions [this also should mean a replication of the 100,000 times better result that Bussard had with the WB6 prototype], Nebel said. That could mean Polywell fusion would actually lead to a power-generating reaction. But based on the 10-month, shoestring-budget experiment, the team can’t rule out the possibility that a different phenomenon is causing the observed effects.

“If you want to say something absolutely, you have to say there’s no other explanation,” Nebel said. The review board agreed with that conservative assessment, he said.

The good news, from Nebel’s standpoint, is that the WB-7 experiment hasn’t ruled out the possibility that Polywell fusion could actually serve as a low-cost, long-term energy solution. “If this thing was absolutely dead in the water, we would have found out,” he said.

If Polywell pans out, nuclear fusion could be done more cheaply and more safely than it could ever be done in a tokamak or a laser blaster.

Despite the skepticism, Nebel and his colleagues have already drawn up a plan for the next step: an 18-month program to build and test a larger fusor prototype. “We’re shopping that around inside the DOD [Department of Defense], and we’ll see what happens,” he said.

Nebel said some private-sector ventures are also interested in what EMC2 is up to, and that may suggest a backup plan in case the Pentagon isn’t interesting in following up on WB-7.

For the time being, Nebel said his five-person team is getting by on some small-scale contracts from the Defense Department (including these three). “I’ve got enough to cover the people we’ve got, and that’s about it,” he said. “What we’re doing with these contracts is trying to get prepared for the next step.”

He’s also waiting to see what the Obama administration will bring. Will the White House support EMC2’s low-cost, under-the-radar fusion research program alongside ITER and the National Ignition Facility? “We just don’t know,” Nebel said.

Highlights of Bussard’s Google Talk on IEC Fusion

IEC Fusion for Dummies

FURTHER INFO
Polywell fusion discussion board

The next IEC fusion record could be a 100 MW version.

Successful development of IEC fusion would transform space travel and energy

There was speculation that the next IEC fusion experiments would be 100MW versions. This is not clear based on the procurement request.

Here is an introduction to the inertial electrostatic fusion concept.

Some controversy:

According to Todd Rider in his general critique of inertial-electrostatic confinement fusion systems, net energy production is not viable in IEC fusion for fuels other than D-T, D-D, and D-He3, and breakeven operation with any fuel except D-T is unlikely. The primary problem that he discusses is the thermalization of ions, allowing them to escape over the top of the electrostatic well more rapidly than they fuse. He considers his paper optimistic because he assumes that core degradation can be countered.

Nevins makes an argument similar to Rider’s in [W.M. Nevins, Phys. Plasmas (10), 3804 (October, 1995)], where he shows that the fusion gain (ratio of fusion power produced to the power required to maintain the non-equilibrium ion distribution function) is limited to 0.1 assuming that the device is fueled with a mixture of deuterium and tritium. A fusion gain of about 10 is required for net energy production.

From M. Simon:

Rider’s chief criticism is related to the recirculating power required in a colliding beam machine: “In virtually all cases, this minimum recirculating power is substantially larger than the fusion power, so barring the discovery of methods of recirculating the power at exceedingly high efficiencies, reactors employing plasmas not in thermodynamic equilibrium will not be able to produce net power”. This is a very valid criticism and is acknowledged by Robert Bussard. However, Bussard claims that the discovery of what he terms the Wiffle Ball effect and by circulating electrons escaping from the Wiffle ball at high efficiencies he can get the total electron circulation efficiency into the 99.999% to 99.9999% range, making machines of his proposed design viable for power production.

So Rider in his Masters thesis theoretically indicated that he did not believe the electrons could be contained in the IEC fusion designs. Robert Bussard believed and claimed experimental proof that he could and built a test machine which had results indicating success. The device shorted out. The recent work by Dr Nebel and his team replicated Robert Bussards work and their device runs like a clock and does not short out. Robert Bussard also had a PHD in physics. Bussard served as the Atomic Energy Commission assistant director of its controlled thermonuclear reaction division in the early 1970s, helping found the United States fusion program [basically one of key people in starting the US fusion program]. Bussard’s worked on actual Tokomak and Riggatron and then for 17 years inertial electrostatic fusion experiments.

Other fusion researchers such as Rostoker and Monkhorst have disagreed with Rider and Nevins analyses. They claiming Rider and Nevins assumptions do not always apply, and proposing nonthermal schemes that they calculate can produce net power, and theorists at LANL have proposed [R.A. Nebel and D.C. Barnes, “The periodically oscillating plasma sphere,” Fusion Technology 38, 28 (1998).] a new electrostatic plasma equilibrium that should mitigate this problem. This concept, called Periodically Oscillating Plasma Sphere (POPS), has been confirmed experimentally[J. Park et al., “First experimental confirmation of periodically oscillating plasma sphere (POPS) oscillation,” submitted to Physical Review Letters]. POPS oscillation maintains equilibrium distribution of the ions at all times, which would eliminate any power loss due to Coulomb collisions, resulting in a net energy gain for fusion-power generation.

IEC fusion type devices currently work to generate fusion and generate billions of neutrons.

Robert Bussards 2006 Google Techtalk on IEC Fusion 92 minutes

Analysis of Bussard Fusion Videos
Part 1

Part 2

Part 3

IEC Fusion versus Tokomak Fusion