India Major Fast Breeder Program Kicking Into Higher Gear: Two Breeder Will Start Construction

Scientists and engineers at the Indira Gandhi Centre for Atomic Research (IGCAR) are hoping to save around Rs.5 billion (Rs.500 crore or $104 million) by modifying the design of four fast reactors nuclear power plants. With the experience gained from prototype that is being completed, the new projects can be completed in five years as against seven years. Two new fast breeders reactor will start construction shortly. The government has sanctioned construction of four more 500 MW fast reactors of which two will be housed inside the existing nuclear island at Kalpakkam and expected to be ready by 2020. Decision on locating the remaining two fast reactors is yet to be taken. The proposed reactors will also be powered by mixed oxide fuel – a blend of plutonium and uranium oxides – like the upcoming 500 MW prototype fast breeder reactor (PFBR) in the same complex.

Similarly, construction of the Fast Reactor Fuel Cycle Facility is expected to start soon.

With the Rs.35-billion prototype fast breeder reactor (PFBR) project progressing at good pace at Kalpakkam, 80 km from here, the Indian government has sanctioned building of four more 500 MW fast reactors.

A breeder reactor is one that breeds more material for a nuclear fission reaction than it consumes, so that the reaction – that ultimately produces electricity – can continue.

The Indian fast reactors will be fueled by a blend of plutonium and uranium oxide.

While the reactor will use fission plutonium for power production, it will also breed more plutonium than what it uses from the natural uranium.

The surplus plutonium from each fast reactor can be used to set up more such reactors and grow the nuclear capacity in tune with India’s needs.

These reactors are also called fast spectrum reactors since the neutrons coming from the fission will not be moderated. Two of the proposed reactors will come up in Kalpakkam, the site for which has been approved, while the location for the remaining two are yet to be finalized.

According to Raj, the four reactors will be designed to last 60 years – an increase of 20 years over PFBR’s current life span.

“The blueprint for the four oxide fuel fast reactors is ready. The roadmap for research and development will be ready next month,” reactor engineering group director S.C. Chetal told IANS.

Detailing the cost-cutting steps, Chetal said: “The proposed reactors will be built as twin units. That means many of the facilities will be shared by the two reactors, which in turn saves capital and running costs.”

For instance, there will be fewer welding points, making the reactors safer and more economical.

“The savings will be achieved from reduced material consumption through innovative design design,” said P. Chellapandi, director, safety group.

Chellapandi said the safety vessel of the proposed reactors will be smaller than the one installed inside the PFBR’s reactor vault: its diameter will be reduced to 11.5 metres from 12.9 metres.

“A reduction of one metre will result in an overall saving of Rs.25 crore (Rs.250 million) on material, fabrication and civil construction.”

The new design fast reactors will have six steam generators as against eight in the PFBR and changes will be made in the grid plate, sodium and reactor shutdown systems.