Gears are microfabricated down to diameters of a few micrometres. Natural macromolecular motors, of tens of nanometres in diameter, also show gear effects1. At a smaller scale, the random rotation of a single-molecule rotor encaged in a molecular stator has been observed, demonstrating that a single molecule can be rotated with the tip of a scanning tunnelling microscope (STM). A self-assembled rack-and-pinion molecular machine where the STM tip apex is the rotation axis of the pinion was also tested5. Here, we present the mechanics of an intentionally constructed molecule-gear on a Au(111) surface, mounting and centring one hexa-t-butyl-pyrimidopentaphenylbenzene molecule on one atom axis. The combination of molecular design, molecular manipulation and surface atomic structure selection leads to the construction of a fundamental component of a planar single-molecule mechanical machine. The rotation of our molecule-gear is step-by-step and totally under control, demonstrating nine stable stations in both directions.
Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.
Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.
A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts. He is open to public speaking and advising engagements.