Rydberg Quantum Simulator – A Quantum Simulator that Can be Made With Current Technology

Ads : Nano Technology   Netbook    Technology News    Computer Software

Nature Physics – A Rydberg quantum simulator

A universal quantum simulator is a controlled quantum device that reproduces the dynamics of any other many-particle quantum system with short-range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open-system evolution. Here we propose that laser-excited Rydberg atoms in large-spacing optical or magnetic lattices provide an efficient implementation of a universal quantum simulator for spin models involving n-body interactions, including such of higher order. This would allow the simulation of Hamiltonians of exotic spin models involving n-particle constraints, such as the Kitaev toric code, colour code and lattice gauge theories with spin-liquid phases. In addition, our approach provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates using auxiliary Rydberg atoms, including a possible dissipative time step through optical pumping. This enables mimicking the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.

(8 page pdf arxiv) Digital Coherent and Dissipative Quantum Simulations with Rydberg Atoms by Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter Zoller, Hans Peter Büchler

Following Feynman and as elaborated on by Lloyd, a universal quantum simulator (QS) is a controlled quantum device which reproduces the dynamics of any other many particle quantum system with short range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open system evolution. We investigate how laser excited Rydberg atoms in large spacing optical or magnetic lattices can provide an efficient implementation of a universal QS for spin models involving (high order) n-body interactions. This includes the simulation of Hamiltonians of exotic spin models involving n-particle constraints such as the Kitaev toric code, color code, and lattice gauge theories with spin liquid phases. In addition, it provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The key basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates via auxiliary Rydberg atoms, including a possible dissipative time step via optical pumping. This allows to mimic the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates

Advertising

Trading Futures
 
Nano Technology
 
Netbook     Technology News
 
Computer Software
   
Future Predictions

Thank You

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.