Unraveling silks’ secrets – cooperative chemical bonds

Ads : Nano Technology   Netbook    Technology News &nbsp  Computer Software

A new analysis of the structure of silks explains the paradox at the heart of their super-strength, and may lead to even stronger synthetic materials.

Scientists at MIT have unraveled some of their deepest secrets in research that could lead the way to the creation of synthetic materials that duplicate, or even exceed, the extraordinary properties of natural silk.

Silks are made from proteins, including some that form thin, planar crystals called beta-sheets. These sheets are connected to each other through hydrogen bonds — among the weakest types of chemical bonds, and a far cry from the much stronger covalent bonds found in most organic molecules. Buehler’s team carried out a series of atomic-level computer simulations that investigated the molecular failure mechanisms in silk. “Small yet rigid crystals showed the ability to quickly re-form their broken bonds, and as a result fail ‘gracefully’ — that is, gradually rather than suddenly,” graduate student Keten explains.

“In most engineered materials” — ceramics, for instance — “high strength comes with brittleness,” Buehler says. “Once ductility is introduced, materials become weak.” But not silk, which has high strength despite being built from inherently weak building blocks. It turns out that’s because these building blocks — the tiny beta-sheet crystals, as well as filaments that join them — are arranged in a structure that resembles a tall stack of pancakes, but with the crystal structures within each pancake alternating in their orientation. This particular geometry of tiny silk nanocrystals allows hydrogen bonds to work cooperatively, reinforcing adjacent chains against external forces, which leads to the outstanding extensibility and strength of spider silk.

One surprising finding from the new work is that there is a critical dependence of the properties of silk on the exact size of these beta-sheet crystals within the fibers. When the crystal size is about three nanometers (billionths of a meter), the material has its ultra-strong and ductile characteristics. But let those crystals grow to five nanometers, and the material becomes weak and brittle.

Buehler says the work has implications far beyond just understanding silk. He notes that the findings could be applied to a broader class of biological materials, such as wood or plant fibers, and bio-inspired materials, such as novel fibers, yarns and fabrics or tissue replacement materials, to produce a variety of useful materials out of simple, commonplace elements. For example, he and his team are looking at the possibility of synthesizing materials that have a similar structure to silk, but using molecules that have inherently greater strength, such as carbon nanotubes.

The long-term impact of this research, Buehler says, will be the development of a new material design paradigm that enables the creation of highly functional materials out of abundant, inexpensive materials. This would be a departure from the current approach, where strong bonds, expensive constituents, and energy intensive processing (at high temperatures) are used to obtain high-performance materials


Trading Futures  
  Nano Technology  
Technology News  
  Computer Software
    Future Predictions

Thank You

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.