Game Changing Fuzzy Fiber Nanomaterial

Ad Support : Nano Technology   Netbook    Technology News    Computer Software

A $3 million Ohio Third Frontier award to the University of Dayton Research Institute will fund the scale-up and production of a “game-changing” new nanomaterial that will allow composites to multitask – a wind turbine tower that can de-ice its own blades in winter, or store energy to release on a calm day, powering a grid even when its blades are not moving. Or a military vehicle whose armor can serve as a battery – powering some of the vehicle’s electrical components.

Lafdi called the material “game-changing” because of its ability to be produced in continuous sheets to desired sizes like other fabrics. “Everybody is growing carbon nanotubes on substrates,” Lafdi said. “We’re the only people who are producing them on a large-scale and continuous process, and not just in batches. This means we can produce the material at a low cost, and it also means we can produce pieces big enough to cover an aircraft.”

Lafdi and his team have been producing 500 feet of 12-inch-wide fabric per day at a pilot plant in UDRI’s Shroyer Park Center. The new facility, to be located within Dayton’s Aerospace Hub, will be equipped to produce 60-inch-wide fabric.


Nicknamed “fuzzy fiber” by its inventor at UDRI, Nano Adaptive Hybrid Fabric (NAHF-XTM) is the first tailored nanomaterial capable of being produced in sizes and quantities large enough to make them affordable and viable for large-scale commercial use. When incorporated into resins, fuzzy fibers enable composites to be tailored for electrical and thermal conductivity, chemical and biological sensing, energy storage and conversion, thermal management and other properties.



“This is going to disrupt the way we think about materials,” said NAHF-XTM inventor Khalid Lafdi, Group Leader for Carbon Materials at the Research Institute. “From now on, instead of thinking ‘mono,’ we will think ‘multi’ – multiscale, multifunctional, multitasking.” Aside from serving simply as structural material, composites made with fuzzy fiber can work as batteries, sensors, heaters, supercapacitors, structural health monitors and other systems whose operations are normally performed by additional components, Lafdi added. “By manufacturing structural material that can serve multiple functions, fewer parts are needed for any given application, which means reduced cost, lighter weight and greater efficiency.” One targeted application will be unmanned aerial vehicles weighing less than 150 pounds. “We’d like to begin making ‘smart’ structural materials for UAVs that also serve as the plane’s communication, power and sensor systems. Not having to add a battery or external sensors means less weight on the plane.”



If you liked this article, please give it a quick review on Reddit, or StumbleUpon. Thanks

Supporting Advertising



Business Success
   How to Make Money    
Executive Jobs    
Paid Surveys

Thank You

Game Changing Fuzzy Fiber Nanomaterial

Ad Support : Nano Technology   Netbook    Technology News    Computer Software

A $3 million Ohio Third Frontier award to the University of Dayton Research Institute will fund the scale-up and production of a “game-changing” new nanomaterial that will allow composites to multitask – a wind turbine tower that can de-ice its own blades in winter, or store energy to release on a calm day, powering a grid even when its blades are not moving. Or a military vehicle whose armor can serve as a battery – powering some of the vehicle’s electrical components.

Lafdi called the material “game-changing” because of its ability to be produced in continuous sheets to desired sizes like other fabrics. “Everybody is growing carbon nanotubes on substrates,” Lafdi said. “We’re the only people who are producing them on a large-scale and continuous process, and not just in batches. This means we can produce the material at a low cost, and it also means we can produce pieces big enough to cover an aircraft.”

Lafdi and his team have been producing 500 feet of 12-inch-wide fabric per day at a pilot plant in UDRI’s Shroyer Park Center. The new facility, to be located within Dayton’s Aerospace Hub, will be equipped to produce 60-inch-wide fabric.


Nicknamed “fuzzy fiber” by its inventor at UDRI, Nano Adaptive Hybrid Fabric (NAHF-XTM) is the first tailored nanomaterial capable of being produced in sizes and quantities large enough to make them affordable and viable for large-scale commercial use. When incorporated into resins, fuzzy fibers enable composites to be tailored for electrical and thermal conductivity, chemical and biological sensing, energy storage and conversion, thermal management and other properties.



“This is going to disrupt the way we think about materials,” said NAHF-XTM inventor Khalid Lafdi, Group Leader for Carbon Materials at the Research Institute. “From now on, instead of thinking ‘mono,’ we will think ‘multi’ – multiscale, multifunctional, multitasking.” Aside from serving simply as structural material, composites made with fuzzy fiber can work as batteries, sensors, heaters, supercapacitors, structural health monitors and other systems whose operations are normally performed by additional components, Lafdi added. “By manufacturing structural material that can serve multiple functions, fewer parts are needed for any given application, which means reduced cost, lighter weight and greater efficiency.” One targeted application will be unmanned aerial vehicles weighing less than 150 pounds. “We’d like to begin making ‘smart’ structural materials for UAVs that also serve as the plane’s communication, power and sensor systems. Not having to add a battery or external sensors means less weight on the plane.”



If you liked this article, please give it a quick review on Reddit, or StumbleUpon. Thanks

Supporting Advertising



Business Success
   How to Make Money    
Executive Jobs    
Paid Surveys

Thank You