NREL Makes SuperEfficient Air Conditioner

Ad Support : Nano Technology   Netbook    Technology News    Computer Software

NREL senior engineer Eric Kozubal examines a prototype air flow channel of the DEVap air conditioner, which he co-invented. DEVap, which stands for desiccant-enhanced evaporative air conditioner, is a novel concept that uses membrane technology to combine the efficiency of evaporative cooling and the drying potential of liquid desiccant salt solutions. The graph superimposed on the photo shows shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. Credit: Pat Corkery The U.S. Department of Energy’s National Renewable Energy Laboratory has invented a new air conditioning process with the potential of using 50 percent to 90 percent less energy than today’s top-of-the-line units.

It uses membranes, evaporative cooling and liquid desiccants in a way that has never been done before in the centuries-old science of removing heat from the air. “The idea is to revolutionize cooling, while removing millions of metric tons of carbon from the air,” NREL mechanical engineer Eric Kozubal, co-inventor of the Desiccant-Enhanced eVaporative air conditioner (DEVap), said.

Cooling Requires Temperature Drop and Less Moisture

Cooling comes in two forms — sensible cooling, which is a temperature drop, and latent cooling, which comes from pulling the moisture out of the air.

One intriguing product already on the market in arid, temperate climates is the Coolerado cooler. It differs from a typical evaporative cooler by never increasing the moisture content of the supply air. It provides cool air through indirect evaporative cooling. Indirect evaporative systems use a purge air stream that removes heat from the product or supply air stream that is then directed into a building.

That way, the Coolerado can cool the air all the way to the wet-bulb temperature.

“It’s a big improvement on evaporative cooling because it doesn’t add moisture and still gives you cold air,” Kozubal said. However, in a humid climate, it still does not provide cold air or humidity control

DEVap: Liquid Desiccants, Permeable Membranes

The DEVap solves that problem. It relies on the desiccants’ capacity to create dry air using heat and evaporative coolers’ capacity to take dry air and make cold air.

“By no means is the concept novel, the idea of combining the two,” Kozubal said. “But no one has been able to come up with a practical and cost-effective way to do it.”

HVAC engineers have known for decades the value of desiccants to air conditioning. In fact, one of the pioneers of early A/C, Willis Haviland Carrier, knew of its potential, but opted to go the refrigeration route.

Most people know of desiccants as the pebble-sized handfuls that come with new shoes to keep them dry.

The kind NREL uses are syrupy liquids — highly concentrated aqueous salt solutions of lithium chloride or calcium chloride. They have a high affinity for water vapor, and can thus create very dry air.

Because of the complexity of desiccant cooling systems, they have traditionally only been used in industrial drying processes. Inventing a device simple enough for easy installation and maintenance is what has impaired desiccant cooling from entering into commercial and residential cooling markets.

To solve that problem, the NREL device uses thin membranes that simplify the process of integrating air flow, desiccants, and evaporative cooling. These result in an air conditioning system that provides superior comfort and humidity control.

The membranes in the DEVap A/C are hydrophobic, which means water tends to bead up rather than soak through the membranes. Imagine rain falling on a freshly waxed car. That property allows the membranes to control the liquid flows within the cooling core. “It’s that property that keeps the water and the desiccant separated from the air stream,” Kozubal said.

“We bring the water and liquid desiccant into DEVap’s heat-mass exchanger core,” Kozubal said. “The desiccant and evaporative cooling effect work together to create cold-dry air.”

The air is cooled and dried from a hot-humid condition to a cold and dry condition all in one step. This all happens in a fraction of a second as air flows through the DEVap air conditioner. The result is an air conditioner that controls both thermal and humidity loads.

DEVap helps the environment in many ways. DEVap uses 50 percent to 90 percent less energy than top-of-the-line refrigeration-based air conditioning.

Because DEVap uses salt solutions rather than refrigerants, there are no harmful chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) to worry about. A pound of CFC or HCFC in refrigerant-based A/Cs contributes as much to global warming as 2,000 pounds of carbon dioxide. A typical residential size A/C has as much as 13 pounds of these refrigerants. The release of this much refrigerant is equivalent to burning more than 1,300 gallons of gasoline, or driving over 60,000 miles in a 2010 Toyota Prius. That’s based on the Environmental Protection Agency’s fuel efficiency rating for the 2010 Toyota Prius and on the standard of 19.5 pounds of carbon dioxide for every gallon of gasoline burned.

If you liked this article, please give it a quick review on Reddit, or StumbleUpon. Thanks

Supporting Advertising

Business Success
   How to Make Money    
Executive Jobs   
Paid Surveys

Thank You