First Atomtronic sensor from a bose-einstein condensate shaped as a doughnut

This doughnut of ultracold gas spins without friction, creating a current of atoms that could be used to develop the first “atomtronic” sensors.

Physicists have developed a new type of circuit that is little more than a puff of gas dancing in laser beams. By choreographing the atoms of this ultracold gas to flow as a current that can be controlled and switched on and off, the scientists have taken a step toward building the world’s first “atomtronic” device.

In an upcoming paper in Physical Review Letters, the team reports creating this gas by cooling sodium atoms suspended in magnetic fields. The researchers then trapped the atoms in a pair of crossed laser beams and further chilled the atoms to less than 10 billionths of a degree above absolute zero. The two beams also shaped the condensate that formed at these low temperatures into a flattened doughnut with a radius of about 20 micrometers.

This site has covered atomtronics before

Atomtronics probably won’t replace electronics. “Atoms are sluggish compared to electrons, and that means that you probably won’t see atomtronics replace current electronic devices. What atomtronics might be useful for is the field of quantum information.”

The dynamics of our atomtronic devices would be coherent and potentially useful in quantum computing.” He also suggests that there is the possibility that atomtronics could be useful in obtaining sensitive measurements. At the very least, he concludes, “atomtronic systems provide a nice test of fundamental concepts in condensed matter physics.”

A second pair of lasers transferred energy to the doughnut to start it rotating. Because atoms in the condensate behave as a single, coherent quantum particle, such a ring of the substance doesn’t speed up or slow down gradually — it jumps between different speeds, much like a blender would if it could change settings instantaneously. The scientists chose the lowest setting for their ring, about one revolution every second.

Because the condensate also happens to be frictionless, this ring should, in theory, rotate forever. Limited by technical difficulties, the research team kept it going for about 40 seconds, the lifetime of their condensate.

“This is the first time that someone has actually made a ring-shaped condensate,” said team member and physicist Gretchen Campbell. “We’re hoping to use this condensate in much the way that superconductors have been used to make improved devices and sensors.”

Her first idea for a useful device was inspired by superconducting quantum interference devices, commonly known as SQUIDs. These devices reveal the presence of very weak magnetic fields by detecting sudden changes of current in semiconductor loops.

Using a similar principle, Campbell’s team believes that Bose-Einstein condensate could provide an extremely sensitive rotation sensor. They added a “weak link” to their condensate ring — a barrier created by a blue laser that could speed up or shut down the flow. Theoretically, if the condensate were kept still and the barrier attached to a rotating sensor, the barrier would cause a sudden jump in current at certain rotation speeds.

The team’s approach to creating an atomtronic device is only one of half a dozen being pursued in laboratories around the world. “They’ve added another tool that we can start to use to build up the atomtronics toolbox,” said Dana Anderson, a physicist at the University of Colorado at Boulder.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks