Berkeley Lab Researchers Make First Perovskite-Based Superlens Follow up

We previously covered the Berkeley Lab development of perovskite superlens that can image 1/14 th of a wavelength

Photonics online has some more information

Superlenses from perovskite oxides that are simpler and easier to fabricate than metamaterials, and are ideal for capturing light in the mid-infrared range, which opens the door to highly sensitive biomedical detection and imaging. It is also possible that the superlensing effect can be selectively turned on/off, which would open the door to highly dense data writing and storage.

Conventional lenses create images by capturing the propagating light waves emitted by an object under illumination and then bending these captured light waves into focus. No matter how perfect a conventional lens is, the smallest image it can ever resolve is about half the wavelength of the illuminating (incident) light – a restriction known as the “diffraction limit.” Superlenses overcome the diffraction limit by capturing the evanescent light waves, which carry detailed information about features on an object that are significantly smaller than the wavelengths of incident light. Because evanescent waves dissipate or “vanish” after traveling a very short distance, conventional lenses seldom ever see them.

“A superlens made out of a metamaterial focuses propagating waves and reconstructs evanescent waves arising from the illuminated objects in the same plane to produce an image with sub-wavelength resolution,” says Susanne Kehr, a former member of Ramesh’s Berkeley research group and now with the University of Saint Andrews in the United Kingdom. “Our perovskite-based superlens doesn’t focus propagating waves, but instead reconstructs evanescent fields only. These fields generate the sub-wavelength images that we study with near-field infrared microscopy.”

Kehr and Liu say that perovskites hold a number of advantages over metamaterials for superlensing. The perovskites they used to make their superlens, bismuth ferrite and strontium titan¬ate, feature a low rate of photon absorption and can be grown as epitaxial multilayers whose highly crystalline quality reduces interface roughness so there are few photons lost to scattering. This combination of low absorption and scattering losses significantly improves the imaging resolution of the superlens.

“In addition, perovskites display a wide range of fascinating properties, such as ferroelectricity and piezoelectricity, superconductivity and enormous magnetoresistance that might inspire new functionalities of perovskite-based superlenses, such as non-volatile memory, microsensors and microactu¬ators, as well as applications in nanoelectronics,” says Liu. “Bismuth ferrite, in particular, is multiferroic, meaning it simultaneously displays both ferroelectric and ferromagnetic properties, and therefore is a good candidate to allow for electric and magnetic tunability.”

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News