Modeling of Time with Metamaterials

Arxiv – Modeling of Time with Metamaterials (14 pages)

Metamaterials have been already used to model various exotic “optical spaces”. Here we demonstrate that mapping of monochromatic extraordinary light distribution in a hyperbolic metamaterial along some spatial direction may model the “flow of time”. This idea is demonstrated in experiments performed with plasmonic hyperbolic metamaterials. Appearance of the “statistical arrow of time” is examined in an experimental scenario which emulates a Big Bang-like event

MIt Technology Review coverage- By recreating the Big Bang inside a metamaterial for the first time, physicists have shown why the cosmological arrow of time points in the same direction as the thermodynamic arrow of time.

Igor Smolyaninov at the University of Maryland, College Park, says it is possible to recreate the arrow of time inside a metamaterial. Such an experiment, he says, allows the experimental study of one of the great outstanding mysteries in science: why the cosmological arrow of time is the same as the thermodynamic arrow of time.

At the same time, the exercise gives a curious insight into the potential for time travel.

The arrow of time is a long standing puzzle. Many cosmologists believe that the Universe began with the Big Bang, an event that is clearly in our past.

And yet our standard definition of time comes from thermodynamics and the observation that entropy always increases with time. For example, you can easily break an egg or mix milk into your tea but reversing these processes is hard. Observing phenomena like these defines the arrow of time.

Smolyaninov says that a Big Bang event in the metamaterial occurs when the pattern of light rays expands relative to the z-dimension, or in other words, when the world lines expand as a function of time. This establishes a cosmological arrow of time.

The next question is how this arrow relates to a thermodynamic arrow of time. This requires a definition of entropy inside the metamaterial which Smolyaninov says is a kind of measure of the disorder associated with the light rays.

If the metamaterials are perfect the rays should propagate perfectly. But they’re not perfect and so distort the rays as they spread. This determines a thermodynamic arrow of time and shows why it is the same as the cosmological arrow of time.

But there’s a problem of course. Although there is a formal mathematical analogy between these spaces, it’s not at all clear what plays the role in Minkowski space of the imperfect propagation of light through electromagnetic space.

In the past, scientists have only been able to think about these problems theoretically but metamaterials now allow them to s study them experimentally.

Amazingly, Smolynainov and a colleague, Yu-Ju Hung, have actually built their time simulator. Their system is made using specially shaped plastic strips placed on a gold substrate. And the light rays are actually plasmons that propagate across the surface of the metal while being distorted by the plastic strips.

This represents a number of firsts. To start with, Smolyaninov uses this system to recreate the Big Bang in his lab. He calls it a toy Big Bang but it’s hard to understate the significance of this event. A Big Bang in your own lab!

He then goes on to use his model to study the arrows of time. Imagine: your own custom-built arrow of time!

This system also gives an interesting insight into the nature of time machines. The question Smolyaninov asks is whether it is possible to create closed time-like curves in his material. This is equivalent to asking whether it is possible for particles in a Minkowski space to travel in a curve that takes them back to the point in space-time where they started.

He considers this by imagining a cylindrical metamaterial in which the z-dimension and radial dimension are space-like and the angular distance around the cylinder is time-like. Can closed time-like curves exist in this system, he asks. “At first glance, this question is simple, and the answer should be “yes”,” he says.

But under closer examination the answer turns out to be different. He points out that while it is possible for light rays to follow circular paths that return to the point from where they started, these rays would not perceive the angular dimension as time-like.

By comparison, any ray that does perceive the angular dimension as time-like cannot actually return to the same point in space-time, (although it can travel a world line that is very close to a closed time-like curve). So time machines, even trivial ones like this, are impossible.

That’s hugely impressive work. Smolyaninov is one of the world’s leading thinkers on metamaterials and has done much to advance the theory that links electromagnetic and Minkowski spaces.

Now he’s actually getting his hands dirty. In creating for the first time metamaterials that reproduce the Big Bang and the arrows of time that result, he’s surely achieved an extraordinary landmark.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.