100 percent efficient energy transfer in artificial light harvesting

Journal of the American Chemical Society – Efficient Excited Energy Transfer Reaction in Clay/Porphyrin Complex toward an Artificial Light-Harvesting System

The quantitative excited energy transfer reaction between cationic porphyrins on an anionic clay surface was successfully achieved. The efficiency reached up to ca. 100% owing to the “Size-Matching Rule” as described in the text. It was revealed that the important factors for the efficient energy transfer reaction are (i) suppression of the self-quenching between adjacent dyes, and (ii) suppression of the segregated adsorption structure of two kinds of dyes on the clay surface. By examining many different kinds of porphyrins, we found that tetrakis(1-methylpyridinium-3-yl) porphyrin (m-TMPyP) and tetrakis(1-methylpyridinium-4-yl) porphyrin (p-TMPyP) are the suitable porphyrins to accomplish a quantitative energy transfer reaction. These findings indicate that the clay/porphyrin complexes are promising and prospective candidates to be used for construction of an efficient artificial light-harvesting system.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

About The Author

Add comment

E-mail is already registered on the site. Please use the Login form or enter another.

You entered an incorrect username or password

Sorry, you must be logged in to post a comment.