Top ten Cybernetics and Mind Computer Interface Advances

1. Matti Mintz, from Tel Aviv University in Israel, has developed the artificial cerebellum which sits on the outside of the skull and is wired to the brain using electrodes. The chip mimics the cerebellum, a small region of the brain which plays an important role in motor control and movement. This demonstrates how far we have come towards creating circuitry that could one day replace damaged brain areas and even enhance the power of the healthy brain.

Here is Ratcutus of Borg

2. Scientists use brain imaging to reveal the movies in our mind and suggests a visual brain machine interface is feasible.

Using functional Magnetic Resonance Imaging (fMRI) and computational models, UC Berkeley researchers have succeeded in decoding and reconstructing people’s dynamic visual experiences – in this case, watching Hollywood movie trailers.

As yet, the technology can only reconstruct movie clips people have already viewed. However, the breakthrough paves the way for reproducing the movies inside our heads that no one else sees, such as dreams and memories, according to researchers.

3. The University of California, San Diego has demonstrated that a thin flexible, skin-like device, mounted with tiny electronic components, is capable of acquiring electrical signals from the brain and skeletal muscles and potentially transmitting the information wirelessly to an external computer.

4. The BioBolt, as the implant is called, can act as an interface between the human brain and an external device like a computer. It’s not the first device to do so. But the BioBolt is distinguished from similar devices by its minimal invasiveness and low power usage. Whereas other neural implants require the skull to be open–rather drastically limiting the range of their usefulness–the BioBolt doesn’t penetrate the cortex, and it can be completely covered by the patient’s skin, crucial to fending off infection. (Still, points out MedGadget, this “minimally invasive” technology does require a wee-bit of skull drilling.)

Biobolt prototype placed on primate skull

5. Tiny, implantable computers that would restore brain function lost to disease or injury is the goal of University of Washington research recently funded by a $1 million, three-year grant from the W.M. Keck Foundation. The Keck project is the next step in advancing the technology of miniature devices developed at the UW to record from and stimulate the brain, spinal cord and muscles.

6. Proton-based transistor could let machines communicate with living things and in the future could enable better cybernetics and implants. The current prototype has a silicon base and could not be used in a human body. Longer term, however, a biocompatible version could be implanted directly in living things to monitor, or even control, certain biological processes directly.

Devices that connect with the human body’s processes are being explored for biological sensing or for prosthetics, but they typically communicate using electrons, which are negatively charged particles, rather than protons, which are positively charged hydrogen atoms, or ions, which are atoms with positive or negative charge.

“So there’s always this issue, a challenge, at the interface – how does an electronic signal translate into an ionic signal, or vice versa?” said lead author Marco Rolandi, a UW assistant professor of materials science and engineering. “We found a biomaterial that is very good at conducting protons, and allows the potential to interface with living systems.”

7. Two Memristors are Needed to Mimic Hebbian Learning in Synapse.

HP plans to be commercially producing devices with trillions of memristors by 2014.

8. Quasi-liquid memristors might make better brain implants.

Researchers at North Carolina State University have demonstrated new “soft” electronic components, built from liquid metals and hydrogels. The scientists hope that such components—quasi-liquid diodes and memristors—will work better than traditional electronics to interface with wet squishy things, such as the human brain.

9. Researchers at MIT and other institutions are discussion a future vision of brain coprocessors

We are entering a neurotechnology renaissance, in which the toolbox for understanding the brain and engineering its functions is expanding in both scope and power at an unprecedented rate. According to Ed Boyden, an Assistant Professor, Biological Engineering, and Brain and Cognitive Sciences at the MIT Media Lab talk at emTech 2010.

10. Brain computer interfaces are heading to the level of connecting to individual neurons.

Where it is going

The Human Brain Project has been officially selected as one of the finalists for the EU’s FET Flagship Program. The goal of the project, proposed by a Consortium of European Universities, is to create a simulation of the human brain – an achievement that promises to revolutionize not only neuroscience, medicine and the social sciences – but also information technology and robotics. It has a one in three chance of receiving $1.6 billion in funding.

In maybe 5 years, these techniques will lead to (deep brain stimulation) DBS probes in clinical use that are much smarter and more widely applicable than today’s crude appliances.

But when I look further out, say 10 to 20 years from now, I believe the technology that we are developing today will eventually be used in smart brain implants. Such implants could replace and repair damaged brain tissue. Or fill brain cavities caused by tumors, accidents, or brain infarcts.

These projects are already underway for brain computer interfaces and brain emulation. Robotics, brain computer interfaces and artificial general intelligences will all get a boost in capability with molecular manufacturing in the 2030-2050 timeframe.

Slow upload/transfers

I described the slow consciousness transfer in November, 2010

We are making progress to prosthetics for the brain. I have been tracking this progress closely. The items above point to this progress.

If we get enough memory and a high traffic wetbrain to computer brain connection so that there is a shared consciousness from the wetbrain with the added part. Then over days/months and years there is consciousness over both parts. Memory and visual stimuli spanning both systems and we can ensure thorough copying and duplication.

If the wetbrain is lost at some future point – it becomes like how a stroke is experienced by people now. There was more brain before and then part is lost. If the part that was lost is fully duplicated with other parts of the brain then it could be a minor stroke.

Consciousness and personality is preserved when someone loses 1% of their brain.

By being able to have consciousness span current brain and new brain for a sufficient period of time and having real time consciousness operating throughout the upload and eventual shutoff there would be less issue over is consciousness preserved. I personally would have more confidence in that process than the fast upload scenarios.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks