Stratospheric Geoengineering test

In October, British researchers supported by the U.K. government will attempt to pump water a kilometer into the air using little more than a helium balloon and a rubber hose. The experiment, which will take place at a military airfield along England’s east coast, is meant as a test of a proposed geoengineering technique for offsetting the warming effects of greenhouse gases. If the balloon and hose can handle the water’s weight and pressure, similar pipes rising 20 kilometers could pump tons of reflective aerosols into the stratosphere.

The scheme, called SPICE (stratospheric particle injection for climate engineering), is one of several proposed geoengineering methods under study. In this case, the idea is that particles injected into the stratosphere would reflect a small percentage of the sun’s energy back into space, thereby cooling the planet. The concept seeks to mimic the cooling effect of volcanoes that inject sulfide particles into the stratosphere in large quantity. A 2009 study by the U.K. meteorological office estimated that 10 million metric tons of sulfide particles injected annually into the stratosphere would cool the planet by approximately 2 °C within a few years.

The Stratoshield has been proposed as a simple and low cost way to prevent global warming

The current pilot program will pump 100 kilograms of water per hour to an altitude of one kilometer. Full-scale designs call for as many as 64 pipes spread around the world, each lifting five kilograms of sulfur dioxide or other reflective particles per second—approximately 160,000 metric tons per year. Each pipe alone would weigh 30 tons and would be held aloft by a balloon 100 meters in diameter, slightly larger than the largest balloons ever built. The biggest challenge of all, however, would be developing a flexible pipe that can withstand ultrahigh pressures. To raise the particles to a height of 20 kilometers, the pipe would have to withstand 4,000 to 6,000 bar, or atmospheres of pressure.