Faster-Than-Light Neutrino Puzzle Claimed Solved by Special Relativity

Technology Review – a likely but unconfirmed explaination for the faster than light experiement measurements has been put forward.

The relativistic motion of clocks on board GPS satellites exactly accounts for the superluminal effect, says physicist.

The radio waves carrying the time signal must travel at the speed of light, regardless of the satellites’ speed.

But there is an additional subtlety. Although the speed of light is does not depend on the the frame of reference, the time of flight does. In this case, there are two frames of reference: the experiment on the ground and the clocks in orbit. If these are moving relative to each other, then this needs to be factored in.

The OPERA team overlooks this because it thinks of the clocks as on the ground not in orbit.

How big is this effect? Van Elburg calculates that it should cause the neutrinos to arrive 32 nanoseconds early. But this must be doubled because the same error occurs at each end of the experiment. So the total correction is 64 nanoseconds, almost exactly what the OPERA team observes.

That’s impressive but it’s not to say the problem is done and dusted. Peer review is an essential part of the scientific process and this argument must hold its own under scrutiny from the community at large and the OPERA team in particular.

If it stands up, this episode will be laden with irony. Far from breaking Einstein’s theory of relatively, the faster-than-light measurement will turn out to be another confirmation of it.

Arxiv – Times of Flight between a Source and a Detector observed from a GPS satelite

The Michelson-Morley experiment shows that the experimental outcome of an interference experiment does not depend on the constant velocity of the setup with respect to an inertial frame of reference. From this one can conclude the existence of an invariant velocity of light. However it does not follow from their experiment that a time-of-flight is reference frame independent. In fact the theory of special relativity predicts that the distance between the production location of a particle and the detection location will be changed in all reference frames which have a velocity component parallel to the baseline separating source and detector in a foton time-of-flight experiment. For the OPERA experiment we find that the associated correction is in the order of 32 ns. Because, judging from the information provided, the correction needs to be applied twice in the OPERA experiment the total correction to the final results is in the order of 64 ns. Thus bringing the apparent velocities of neutrino’s back to a value not significantly different from the speed of light. We end this short letter by suggesting an analysis of the experimental data which would illustrate the effects described.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks