Vintage space has the Carnival of Space 239
Astronomers are left scratching their heads over a new observation of a “clump” of dark matter apparently left behind after a massive merger between galaxy clusters. What is so puzzling about the discovery is that the dark matter collected into a “dark core” which held far fewer galaxies than expected. The implications of this discovery present challenges to current understandings of how dark matter influences galaxies and galaxy clusters.
Initially, the observations made in 2007 were dismissed as bad data. New data obtained by the Hubble Space Telescope in 2008 confirmed the previous observations of dark matter and galaxies parting ways. The new evidence is based on observations of a distant merging galaxy cluster named Abell 520. At this point, astronomers have a challenge ahead of them in order to explain why dark matter isn’t behaving as expected.
This composite image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520, formed from a violent collision of massive galaxy clusters. Image Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University)
Expected and Detected:
X-ray emission was detected from the atmospheres of planets and comets. The X-rays are produced when solar X-rays and high-speed particles flowing away from the Sun hit these atmospheres. The observed X-radiation provides information on the outer atmospheres of these objects that is difficult to obtain with other telescopes.
Jupiter’s aurora
Unexpected: The X-radiation from Jupiter’s aurora, the equivalent of Earth’s Northern Lights, was discovered to be located very near Jupiter’s poles, suggesting that the auroral X-rays are produced by particles streaming along Jupiter’s magnetic field all the way from Jupiter’s moon Io.
Unexpected: The strongest X-ray emission from Saturn came from its equatorial regions and varied with solar activity, suggesting that Saturn acts like a surprisingly efficient X-ray mirror that reflects X-rays from the Sun.
Nextbigfuture contributions
If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.
Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.
A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts. He is open to public speaking and advising engagements.