Upconverting Spectrum could lead to 40% efficient solar power

Low cost solar cells suitable for rooftop panels could reach a record-breaking 40 percent efficiency following an early stage breakthrough by a University of Sydney researcher and his German partners.

“We are able to boost efficiency by forcing two energy-poor red photons in the cell to join and make one energy-rich yellow photon that can capture light, which is then turned into electricity,” Professor Schmidt said.

“We now have a benchmark for the performance of an upconverting solar cell. We need to improve this several times, but the pathway is now clear.”

Energy and Environmental Science journal – Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion

Single-threshold solar cells are fundamentally limited by their ability to harvest only those photons above a certain energy. Harvesting below-threshold photons and re-radiating this energy at a shorter wavelength would thus boost the efficiency of such devices. We report an increase in light harvesting efficiency of a hydrogenated amorphous silicon (a-Si:H) thin-film solar cell due to a rear upconvertor based on sensitized triplet–triplet-annihilation in organic molecules. Low energy light in the range 600–750 nm is converted to 550–600 nm light due to the incoherent photochemical process. A peak efficiency enhancement of (1.0 ± 0.2)% at 720 nm is measured under irradiation equivalent to (48 ± 3) suns (AM1.5). We discuss the pathways to be explored in adapting photochemical UC for application in various single threshold devices.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

About The Author