3-D laser sintering technology can make aircraft parts 50-75% lighter

Phys Org – More than 50 percent weight savings in aircraft construction is now possible using hypermodern production techniques. A process called 3-D laser sintering of the raw material permits a completely new kind of fabrication. This process can reduce aircraft component part counts and improve designs, leading to enormous savings in weight and volume. The only equipment for this process in Austria – and at its time the second in the world – is located at FOTEC in Wiener Neustadt. The research subsidiary of the University of Applied Sciences located there is presently optimising the monitoring and quality control of the production process, while manufacturing a fuel collector for an aircraft engine that is even around 75 percent lighter than before.

The method is still so new that there are only a few professional production machines worldwide. One of them is located at FOTEC Forschungs- und Technologietransfer GmbH in Wiener Neustadt. Using this machine, a laser-sintered prototype fuel collector has now been fabricated for Austrian aircraft manufacturer Diamond Aircraft Industries GmbH. According to Dr. Gerhard Pramhas, Managing Director of FOTEC, “Using laser sintering, we were able to reduce the number of components from five down to one. Along with that went a weight reduction of 77 percent. This was made possible through the unique manufacturing technique.” The raw material for laser sintering is a metallic powder. This is mechanically built up layer-by-layer to a powder base. After applying each layer, the powder is melted by a laser at specified locations. Subsequently, an additional layer of powder is applied and melted again at the pre-calculated locations. In this way, even the most complex components can be manufactured as one piece, one layer at a time.

There is a video of laser sintering at this link

Until now, the part had consisted of five individual pieces produced on a lathe that subsequently were customarily welded together. The pieces are partly hollow to facilitate fuel flow. And in addition, one of the components is threaded, which requires a separate step during production. With laser sintering of metal, the entire fuel collector with galleys and threads is able to be fabricated in one step. The production accuracies are in the range of hundreds of a millimetre and, in addition to the weight, the volume of the fuel collector could be reduced by almost 60 percent.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks