A prototype glove recognizes pen strokes formed in thin air

A team at the Cognitive Systems lab put together inertial sensors, an accelerometer and a gyroscope on a knit glove. The retooled mitt recognizes letter and words and even sentences as its wearer draws them in the air.

Airwriting: Hands-free Mobile Text Input by Spotting and Continuous Recognition of 3d-Space Handwriting with Inertial Sensors

We present an input method which enables complex hands-free interaction through 3d handwriting recognition. Users can write text in the air as if they were using an imaginary blackboard. Motion sensing is done wirelessly by accelerometers and gyroscopes which are attached to the back of the hand. We propose a two-stage approach for spotting and recognition of handwriting gestures. The spotting stage uses a Support Vector Machine to identify data segments which contain handwriting. The recognition stage uses Hidden Markov Models (HMM) to generate the text representation from the motion sensor data. Individual characters are modeled by HMMs and concatenated to word models. Our system can continuously recognize arbitrary sentences, based on a freely definable vocabulary with over 8000 words. A statistical language model is used to enhance recognition performance and restrict the search space. We report the results from a nine-user experiment on sentence recognition for person dependent and person independent setups on 3d-space handwriting data. For the person independent setup, a word error rate of 11% is achieved, for the person dependent setup 3% are achieved. We evaluate the spotting algorithm in a second experiment on a realistic dataset including everyday activities and achieve a sample based recall of 99% and a precision of 25%. We show that additional filtering in the recognition stage can detect up to 99% of the false positive segments.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

About The Author