New metamaterial doubles spectrum range for invisibility

One of the exciting possibilities of metamaterials – engineered materials that exhibit properties not found in the natural world – is the potential to control light in ways never before possible. The novel optical properties of such materials could lead to a “perfect lens” that allows direct observation of an individual protein in a light microscope or, conversely, invisibility cloaks that completely hide objects from sight.

Although metamaterials have revolutionized optics in the past decade, their performance so far has been inhibited by their inability to function over broad bandwidths of light.

Stanford engineers have designed a broadband metamaterial that more than doubles the range of wavelengths of light that can be manipulated.

Advanced Optical Materials journal – Broadband Negative Index Metamaterial at Optical Frequencies

In order for invisibility cloak technology to obscure an object or for a perfect lens to inhibit refraction, the material must be able to precisely control the path of light in a similar manner. Metamaterials offer this potential.

Unlike a natural material whose optical properties depend on the chemistry of the constituent atoms, a metamaterial derives its optical properties from the geometry of its nanoscale unit cells, or “artificial atoms.” By altering the geometry of these unit cells, one can tune the refractive index of the metamaterial to positive, near-zero or negative values.

The group arrived at the new shape using complex mathematics known as transformation optics. They began with a two-dimensional, planar structure that had the desired optical properties, but was infinitely extended (and so would not be a good “atom” for a metamaterial).

Then, much like a cartographer transforms a sphere into a flat plane when creating a map, the group “folded” the two-dimensional infinite structure into a three-dimensional nanoscale object, preserving the original optical properties.

The transformed object is shaped like a crescent moon, narrow at the tips and thick in the center; the metamaterial consists of these nanocrescent “atoms” arranged in a periodic array. As currently designed, the metamaterial exhibits a negative refractive index over a wavelength range of roughly 250 nanometers in multiple regions of the visible and near-infrared spectrum. The researchers said that a few tweaks to its structure would make this metamaterial useful across the entire visible spectrum.

“We could tune the geometry of the crescent, or shrink the atom’s size, so that the metamaterial would cover the full visible light range, from 400 to 700 nanometers,” Atre said.

That composite material probably won’t resemble an invisibility cloak like Harry Potter’s anytime soon; while it could be flexible, manufacturing the metamaterial over extremely large areas could be tricky. Nonetheless, the authors are excited about the research opportunities the new material will open.

“Metamaterials will potentially allow us to do many new things with light, things we don’t even know about yet. I can’t even imagine what all the applications might be,” Garcia said. “This is a new tool kit to do things that have never been done before.”

ABSTRACT – A broadband metamaterial presenting negative indices across hundreds of nanometers in the visible and near-infrared spectral regimes is demonstrated theoretically, using transformation optics to design the metamaterial constituents. The approach begins with an infinite plasmonic waveguide that supports a broadband but dark (i.e, not easily optically accessed) negative index mode. Conformal mapping of this waveguide to a finite split-ring-resonator-type structure transforms this mode into a bright (i.e, efficiently excited) resonance composed of degenerate electric and magnetic dipoles. A periodic array of such resonators exhibits negative refractive indices at optical frequencies in multiple regions exceeding 200 nm in bandwidth. The metamaterial response is confirmed through simulations of plane-wave refraction through a metamaterial prism. These results illustrate the power of transformation optics for new metamaterial designs and provide a foundation for future broadband metamaterial devices.

12 pages of supplemental material

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

New metamaterial doubles spectrum range for invisibility

One of the exciting possibilities of metamaterials – engineered materials that exhibit properties not found in the natural world – is the potential to control light in ways never before possible. The novel optical properties of such materials could lead to a “perfect lens” that allows direct observation of an individual protein in a light microscope or, conversely, invisibility cloaks that completely hide objects from sight.

Although metamaterials have revolutionized optics in the past decade, their performance so far has been inhibited by their inability to function over broad bandwidths of light.

Stanford engineers have designed a broadband metamaterial that more than doubles the range of wavelengths of light that can be manipulated.

Advanced Optical Materials journal – Broadband Negative Index Metamaterial at Optical Frequencies

In order for invisibility cloak technology to obscure an object or for a perfect lens to inhibit refraction, the material must be able to precisely control the path of light in a similar manner. Metamaterials offer this potential.

Unlike a natural material whose optical properties depend on the chemistry of the constituent atoms, a metamaterial derives its optical properties from the geometry of its nanoscale unit cells, or “artificial atoms.” By altering the geometry of these unit cells, one can tune the refractive index of the metamaterial to positive, near-zero or negative values.

The group arrived at the new shape using complex mathematics known as transformation optics. They began with a two-dimensional, planar structure that had the desired optical properties, but was infinitely extended (and so would not be a good “atom” for a metamaterial).

Then, much like a cartographer transforms a sphere into a flat plane when creating a map, the group “folded” the two-dimensional infinite structure into a three-dimensional nanoscale object, preserving the original optical properties.

The transformed object is shaped like a crescent moon, narrow at the tips and thick in the center; the metamaterial consists of these nanocrescent “atoms” arranged in a periodic array. As currently designed, the metamaterial exhibits a negative refractive index over a wavelength range of roughly 250 nanometers in multiple regions of the visible and near-infrared spectrum. The researchers said that a few tweaks to its structure would make this metamaterial useful across the entire visible spectrum.

“We could tune the geometry of the crescent, or shrink the atom’s size, so that the metamaterial would cover the full visible light range, from 400 to 700 nanometers,” Atre said.

That composite material probably won’t resemble an invisibility cloak like Harry Potter’s anytime soon; while it could be flexible, manufacturing the metamaterial over extremely large areas could be tricky. Nonetheless, the authors are excited about the research opportunities the new material will open.

“Metamaterials will potentially allow us to do many new things with light, things we don’t even know about yet. I can’t even imagine what all the applications might be,” Garcia said. “This is a new tool kit to do things that have never been done before.”

ABSTRACT – A broadband metamaterial presenting negative indices across hundreds of nanometers in the visible and near-infrared spectral regimes is demonstrated theoretically, using transformation optics to design the metamaterial constituents. The approach begins with an infinite plasmonic waveguide that supports a broadband but dark (i.e, not easily optically accessed) negative index mode. Conformal mapping of this waveguide to a finite split-ring-resonator-type structure transforms this mode into a bright (i.e, efficiently excited) resonance composed of degenerate electric and magnetic dipoles. A periodic array of such resonators exhibits negative refractive indices at optical frequencies in multiple regions exceeding 200 nm in bandwidth. The metamaterial response is confirmed through simulations of plane-wave refraction through a metamaterial prism. These results illustrate the power of transformation optics for new metamaterial designs and provide a foundation for future broadband metamaterial devices.

12 pages of supplemental material

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks