New Material Upsalite has the highest surface area for its type and will have breakthrough performance water absorption applications

A new magnesium carbonate material that has been given the name Upsalite. It is foreseen to reduce the amount of energy needed to control environmental moisture in the electronics and drug formulation industry as well as in hockey rinks and ware houses. It can also be used for collection of toxic waste, chemicals or oil spill and in drug delivery systems, for odor control and sanitation after fire.

Upsalite had the highest surface area measured for an alkali earth metal carbonate; 800 square meters per gram.

“This places the new material in the exclusive class of porous, high surface area materials including mesoporous silica, zeolites, metal organic frameworks, and carbon nanotubes”, says Strømme.

“In addition we found that the material was filled with empty pores all having a diameter smaller than 10 nano meters. This pore structure gives the material a totally unique way of interacting with the environment leading to a number of properties important for application of the material.”

Upsalite is for example found to absorb more water at low relative humidities than the best materials presently available; the hydroscopic zeolites, a property that can be regenerated with less energy consumption than is used in similar processes today.

Electron microscopy images of Upsalite. a) SEM micrograph of Upsalite. Scale bar, 1 µm. b) Higher magnification SEM of a region in a) clearly showing the textural porosity of the material. Scale bar, 200 nm. c) Representative TEM image of Upsalite showing contrast consistent with a porous material. The image is recorded with under-focused conditions to enhance the contrast from the pores. Scale bar, 50 nm.
doi:10.1371/journal.pone.0068486.g004

PLOS One – A Template-Free, Ultra-Adsorbing, High Surface Area Carbonate Nanostructure

Abstract

We report the template-free, low-temperature synthesis of a stable, amorphous, and anhydrous magnesium carbonate nanostructure with pore sizes below 6 nm and a specific surface area of ~ 800 m2 g−1, substantially surpassing the surface area of all previously described alkali earth metal carbonates. The moisture sorption of the novel nanostructure is featured by a unique set of properties including an adsorption capacity ~50% larger than that of the hygroscopic zeolite-Y at low relative humidities and with the ability to retain more than 75% of the adsorbed water when the humidity is decreased from 95% to 5% at room temperature. These properties can be regenerated by heat treatment at temperatures below 100°C.The structure is foreseen to become useful in applications such as humidity control, as industrial adsorbents and filters, in drug delivery and catalysis.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News