Understanding regeneration at the molecular and genetic level could enable better wound healing and regeneration in humans

In recent years, Reddien’s lab has identified dozens of genes involved in planarian regeneration. Many of these are related to human genes, and some are active in response to human injuries. “It’s my hope that our continued work will enhance our understanding of what makes some animals great at regeneration and others not as good,” he says.

Reddien has discovered dozens of genes that play key roles in regeneration, whether initiating the process or helping to determine which body part needs to be replaced. One gene that his lab investigated, known as notum, interacts with a cell-communication system called the Wnt signaling pathway to control whether an animal regrows a head or a tail.

Reddien also found that adult planarians maintain a population of pluripotent stem cells, known as clonogenic neoblasts, that can grow into any type of tissue. These cells are key to tissue regeneration, and his lab has identified genes that give these cells their regenerative potential.

“This is the kind of science you dream of when you’re a kid,” Reddien says. “We’re cutting off animals’ heads and figuring out how they regrow new ones at a molecular level. It’s up to us to develop the methods we need to solve these problems because it’s such a new field. It’s just been a real adventure and that’s something I’m greatly drawn to in science.”

Many of the genes that Reddien has discovered in planarians have counterparts in the human genome, though the functions of many in humans have been little studied. Learning more about them could help advance the field of regenerative medicine.

SOURCE – MIT

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks