Caltech engineers focus on the nano to create strong, lightweight materials

The lightweight skeletons of organisms such as sea sponges display a strength that far exceeds that of manmade products constructed from similar materials. Scientists have long suspected that the difference has to do with the hierarchical architecture of the biological materials—the way the silica-based skeletons are built up from different structural elements, some of which are measured on the scale of billionths of meters, or nanometers. Now engineers at the California Institute of Technology (Caltech) have mimicked such a structure by creating nanostructured, hollow ceramic scaffolds, and have found that the small building blocks, or unit cells, do indeed display remarkable strength and resistance to failure despite being more than 85 percent air.

At the nanometer scale, solids have been shown to exhibit mechanical properties that differ substantially from those displayed by the same materials at larger scales. For example, Greer’s group has shown previously that at the nanoscale, some metals are about 50 times stronger than usual,, and some amorphous materials become ductile rather than brittle. “We are capitalizing on these size effects and using them to make real, three-dimensional structures,” Greer says.

Three-dimensional, hollow titanium nitride nanotruss with tessellated octahedral geometry. Each unit cell is on the order of 10 microns, each strut length within the unit cell is about three to five microns, the diameter of each strut is less than one micron, and the thickness of titanium nitride is roughly 75 nanometers.
Credit: Dongchan Jang and Lucas Meza

Nature Materials – Fabrication and deformation of three-dimensional hollow ceramic nanostructures

The largest structure the team has fabricated thus far using the new method is a one-millimeter cube. Compression tests on the the entire structure indicate that not only the individual unit cells but also the complete architecture can be endowed with unusually high strength, depending on the material, which suggests that the general fabrication technique the researchers developed could be used to produce lightweight, mechanically robust small-scale components such as batteries, interfaces, catalysts, and implantable biomedical devices.

Greer says the work could fundamentally shift the way people think about the creation of materials. “With this approach, we can really start thinking about designing materials backward,” she says. “I can start with a property and say that I want something that has this strength or this thermal conductivity, for example. Then I can design the optimal architecture with the optimal material at the relevant size and end up with the material I wanted.”

The team first digitally designed a lattice structure featuring repeating octahedral unit cells—a design that mimics the type of periodic lattice structure seen in diatoms. Next, the researchers used a technique called two-photon lithography to turn that design into a three-dimensional polymer lattice. Then they uniformly coated that polymer lattice with thin layers of the ceramic material titanium nitride (TiN) and removed the polymer core, leaving a ceramic nanolattice. The lattice is constructed of hollow struts with walls no thicker than 75 nanometers.

“We are now able to design exactly the structure that we want to replicate and then process it in such a way that it’s made out of almost any material class we’d like—for example, metals, ceramics, or semiconductors—at the right dimensions,” Greer says.

ABSTRACT

Creating lightweight, mechanically robust materials has long been an engineering pursuit. Many siliceous skeleton species—such as diatoms, sea sponges and radiolarians—have remarkably high strengths when compared with man-made materials of the same composition, yet are able to remain lightweight and porous. It has been suggested that these properties arise from the hierarchical arrangement of different structural elements at their relevant length scales8, 9. Here, we report the fabrication of hollow ceramic scaffolds that mimic the length scales and hierarchy of biological materials. The constituent solids attain tensile strengths of 1.75 GPa without failure even after multiple deformation cycles, as revealed by in situ nanomechanical experiments and finite-element analysis. We discuss the high strength and lack of failure in terms of stress concentrators at surface imperfections and of local stresses within the microstructural landscape. Our findings suggest that the hierarchical design principles offered by hard biological organisms can be applied to create damage-tolerant lightweight engineering materials.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

About The Author