11.75 tesla MRI being built for 100 micron resolution every tenth of second and should be working in 2015

A new MRI with superconducting magnets designed to produce a field of 11.75 teslas will be the world’s most powerful whole-body scanner. Most standard hospital MRIs produce 1.5 or 3 T. A few institutions, including the University of Illinois at Chicago and Maastricht University, in the Netherlands, have recently installed human scanners that can reach 9.4 T. Superconducting magnets used in the Large Hadron Collider (LHC), which last year was used in the discovery of the Higgs boson, produce a field of 8.4 T. The LHC also will be upgraded to 11-13 tesla magnets.

The development of the scanner, known as INUMAC (for Imaging of Neuro disease Using high-field MR And Contrastophores), has been in progress since 2006 and is expected to cost €200 million, or about US $270 million. The project reached a key milestone this summer with delivery of more than 200 kilometers of superconducting cable, which is now being wound into coils that will produce the scanner’s magnetic field.

Standard hospital scanners have a spatial resolution of about 1 millimeter, covering about 10 000 neurons, and a time resolution of about a second. The INUMAC will be able to image an area of about 0.1 mm, or 1000 neurons, and see changes occurring as fast as one-tenth of a second, according to Pierre Védrine, director of the project at the French Alternative Energies and Atomic Energy Commission, in Paris. With this type of resolution, MRIs could detect early indications of brain diseases such as Alzheimer’s or Parkinson’s and perhaps measure the effects of any methods developed to treat those illnesses. It would also allow much more precise functional imaging of the brain at work than is currently available. “You cannot really discriminate today what is happening inside your brain at the level of a few hundred neurons,” Védrine says.

High-field MRI could also allow scientists to explore different methods of imaging. Most MRI machines rely on imaging the nuclei of hydrogen atoms, but stronger scanners might gain useful physiological information by looking for weaker signals from sodium or potassium nuclei.

Improved superconducting wire is key to making such a powerful machine. The wire in the INUMAC magnet is made from niobium-titanium, a common superconductor alloy. But it will experience some uncommon conditions as part of INUMAC. To reach the required field strength, the electromagnet must be able to carry 1500 amperes at 12 T and be cooled by superfluid liquid helium to 1.8 kelvins. That requires specialized manufacturing and precise control of the dimensions of the wire, allowing it to be coiled so the cables are aligned to within a few micrometers of precision.

Another material, niobium-tin, can produce magnetic fields stronger than 20 T, but it was passed over for the job because it’s more expensive than niobium-titanium and very brittle, making it difficult to wind.

SOURCE – IEEE Spectrum

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks