CRISPR Cas Powerful Possibilities for Genetic Engineering

The CRISPR-Cas-system is not only valuable for bacteria but also for working in the laboratory. It detects a specific sequence of letters in the genetic code and cuts the DNA at this point. Thus, scientists can either remove or add genes at the interface. By this, for instance, plants can be cultivated which are resistant against vermins or fungi. Existing technologies doing the same thing are often expensive, time consuming or less accurate. In contrast to them the new method is faster, more precise and cheaper, as fewer components are needed and it can target longer gene sequences.

Additionally, this makes the system more flexible, as small changes allow the technology to adapt to different applications. “The CRISPR-Cas-system is a very powerful tool for genetic engineering,“ says Emmanuelle Charpentier, who came to the HZI from Umeå and was awarded with the renowned Humboldt Professorship in 2013. “We have analysed and compared the enzyme Cas9 and the dual-tracrRNAs-crRNAs that guide this enzyme site-specifically to the DNA in various strains of bacteria.” Their findings allow them to classify the Cas9 proteins originating from different bacteria into groups. Within those the CRISPR-Cas systems are exchangeable which is not possible between different groups.

This allows for new ways of using the technology in the laboratory: The enzymes can be combined and thereby a variety of changes in the target-DNA can be made at once. Thus, a new therapy for genetic disorders caused by different mutations in the DNA of the patient could be on the horizon. Furthermore, the method could be used to fight the AIDS virus HIV which uses a receptor of the human immune cells to infect them. Using CRISPR-Cas, the gene for the receptor could be removed and the patients could become immune to the virus. However, it is still a long way until this aim will be reached.

Still those examples show the huge potential of the CRISPR-Cas technology. “Some of my colleagues already compare it to the PCR,” says Charpentier. This method, developed in the 1980s, allows scientists to ‘copy’ nucleic acids and therefore to manifold small amounts of DNA to such an extent that they can be analysed biochemically. Without this ground-breaking technology a lot of experiments we consider to be routine would have never been possible.

Charpentier was not looking for new molecular methods in the first place. “Originally, we were looking for new targets for antibiotics. But we found something completely different,” says Charpentier. This is not rare in science. In fact some of the most significant scientific discoveries have been made incidentally or accidentally.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News