Stable three-dimensional metallic carbon with interlocking hexagons

Carbon is an amazing material: it not only forms the chemical basis for all known life but also, because of its rich physics and chemistry, displays an array of structures: from the age-old graphite and diamond to more recent C60 fullerene, 1D nanotube, and 2D graphene. One of the unsolved issues in carbon science has been to find a 3D form of carbon that is metallic under ambient conditions. This paper addresses this important challenge. Using state-of-the-art theoretical calculations, we predict the existence of such a phase that is formed from interlocking hexagons and is dynamically, mechanically, and thermally stable. It is suggested that this new form of carbon may be synthesized chemically by using benzene or polyacenes molecules.

“The new metallic carbon structures may have important applications in lightweight metals for space applications, catalysis and in devices showing negative differential resistance or superconductivity,” Wang said.

According to Jena, the team is still early in its discovery process, but hope that these findings may move the work from theory to the experimental phase.

Abstract

Design and synthesis of 3D metallic carbon that is stable under ambient conditions has been a long-standing dream. We predict the existence of such phases, T6- and T14-carbon, consisting of interlocking hexagons. Their dynamic, mechanical, and thermal stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Unlike the previously studied K4 and the simple cubic high pressure metallic phases, the structures predicted in this work are stable under ambient conditions. Equally important, they may be synthesized chemically by using benzene or polyacenes molecules.

SOURCES – PNAS, Virginia Commonwealth University

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Subscribe on Google News