Lighter, faster, cheaper components and lowering power usage and costs by at least 20 times will trigger a true robotic revolution

The Atlas humanoid robot, unveiled last year by Boston Dynamics, a company later acquired by Google, is a marvel. It can clamber over rubble and operate power tools. But these abilities don’t come cheap. Atlas has a price tag well above a million dollars, and it consumes around 15 kilowatts of electricity when in operation, meaning hefty power bills for its owner and limiting its practicality. “That’s enough to power a small city block,” says Alexander Kernbaum, research engineer at the nonprofit research agency SRI International. To be truly practical, he says, Atlas “needs to be many times more efficient.”

Kernbaum is part of a team at SRI that recently began working on that problem under a contract with DARPA, the Pentagon research agency (Atlas itself was built with DARPA funding). The team aims to rethink the robot’s design to preserve its capabilities but slash its power usage by at least 20 times, putting it on par with a microwave oven.

The general approach will be to replace the power-hungry hydraulics that move Atlas’s joints with a smaller number of lighter, more efficient, and cheaper electric components that can achieve the same thing.

Nimble fingers: This three-fingered hand made by iRobot can use its nails to pick up small objects. It could be made for around $3,000 or less.

Rethinking the components used in advanced prototypes such as Atlas to reduce cost and power consumption has become a major focus in robotics research as engineers seek to finally have these machines escape the lab, says Rich Mahoney, SRI’s director of robotics. “We got things that are overdesigned because there’s not been impetus for low cost and good design,” he says.

For a long time researchers have been focused on simply answering basic questions of whether functioning, agile humanoids could be built, says Mahoney. “We were in the domain of ‘Is this possible?’ ” He says this question has now been answered, so the time is right to drive down the costs of the components used in sophisticated robot legs, arms, and hands, making them affordable to small businesses and even consumers. “Manipulation is simply not available at that level now,” says Mahoney. “But it can be.” He says cheaper components would make it possible for humanoids like Atlas to become standard safety tools in places like oil rigs. “Instead of ‘In case of emergency break glass,’ and there’s a hatchet, there would be a humanoid.”

Several low-cost robotic hands recently emerged from another DARPA program called ARM-H. By achieving greater complexity at lower costs, these hands could help Baxter or Unbounded’s robots perform new tasks. Roomba manufacturer iRobot worked with Harvard and Yale to create a three-fingered hand that can do anything from holding a basketball to picking up a key lying flat on a table.

If it were made in quantities of a few thousand, the hand should cost around $3,000, says Mark Claffee, principal robotics engineer at iRobot, which also makes military and telepresence robots. “It’s a dramatic change,” Claffee says, as the current going rate for a robotic hand with similar capabilities starts at around $35,000.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks