Cornell Researchers estimate 100 million planets able to support complex life in the Milky Way

There are some 100 million other places in the Milky Way galaxy that could support complex life, report a group of university astronomers in the journal Challenges. They have developed a new computation method to examine data from planets orbiting other stars in the universe.

Their study provides the first quantitative estimate of the number of worlds in our galaxy that could harbor life above the microbial level.

* Complex life doesn’t mean intelligent life – though it doesn’t rule it out or even animal life – but simply that organisms larger and more complex than microbes could exist in a number of different forms.

* This study does not indicate that complex life exists on that many planets. We’re saying that there are planetary conditions that could support it.

* Origin of life questions are not addressed

Challenges – Assessing the Possibility of Biological Complexity on Other Worlds, with an Estimate of the Occurrence of Complex Life in the Milky Way Galaxy

Abstract: Rational speculation about biological evolution on other worlds is one of the outstanding challenges in astrobiology. With the growing confirmation that multiplanetary systems abound in the universe, the prospect that life occurs redundantly throughout the cosmos is gaining widespread support. Given the enormous number of possible abodes for life likely to be discovered on an ongoing basis, the prospect that life could have evolved into complex, macro-organismic communities in at least some cases merits consideration. Toward that end, we here propose a Biological Complexity Index (BCI), designed to provide a quantitative estimate of the relative probability that complex, macro-organismic life forms could have emerged on other worlds. The BCI ranks planets and moons by basic, first-order characteristics detectable with available technology. By our calculation only 11 (~1.7%) of the extrasolar planets known to date have a BCI above that of Europa; but by extrapolation, the total of such planets could exceed 100 million in our galaxy alone. This is the first quantitative assessment of the plausibility of complex life throughout the universe based on empirical data. It supports the view that the evolution of complex life on other worlds is rare in frequency but large in absolute number.

The scientists surveyed more than 1,000 planets and used a formula that considers planet density, temperature, substrate (liquid, solid or gas), chemistry, distance from its central star and age. From this information, they developed and computed the Biological Complexity Index (BCI).

The BCI calculation revealed that 1 to 2 percent of the planets showed a BCI rating higher than Europa, a moon of Jupiter thought to have a subsurface global ocean that may harbor forms of life. With about 10 billion stars in the Milky Way galaxy, the BCI yields 100 million plausible planets.

Despite the large number of planets that could harbor complex life, the Milky Way is so vast that planets with high BCI values are very far apart, according to the scientists. One of the closest and most promising extrasolar systems, called Gliese 581, has two planets with the apparent, possible capacity to host complex biospheres. The distance from Earth to Gliese 581 is about 20 light years.

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

logo

Don’t miss the latest future news

Subscribe and get a FREE Ebook