Researchers find 509 qubit Dwave System performs as well or better than simulated quantum annealing

Arxiv – Quantum Optimization of Fully-Connected Spin Glasses

The Sherrington-Kirkpatrick model with random couplings is programmed on the D-Wave Two annealer featuring 509 qubits interacting on a Chimera-type graph. The performance of the optimizer compares and correlates to simulated annealing. When considering the effect of the static noise, which degrades the performance of the annealer, one can estimate an improvement on the comparative scaling of the two methods in favor of the D-Wave machine. The optimal choice of parameters of the embedding on the Chimera graph is shown to be associated to the emergence of the spin-glass critical temperature of the embedded problem.

14 page paper

Arxiv – A Quantum Annealing Approach for Fault Detection and Diagnosis of Graph-Based Systems

Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

12 page paper

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks