Canada’s Magnovate will build third generation magnetic levitation high speed rail which could be cost competitive with China’s high speed rail

Canada’s Magnovate aims to commercialize Magline, a proprietary magnetic levitation transport solution. Magline further improves on system economics by utilizing a “packet switching” model that enables offline stops without slowing traffic on the mainline. This enables more vehicles that are not connected to one another to run more often on the network. A project is being developed to connect the cities of Edmonton and Calgary with one of their tracks. The planned length will be just over 180 miles (300 kilometers) and is expected to cost $3.60 billion USD or roughly about $12 million USD per kilometer.

In 2014, Magnovate was awarded a contract from Transport Canada to build the first digitally controlled maglev passive switch in the world. The total cost of the prototype is expected to be about $15 million.

Another project is being developed to build local Magline Transit systems on the campuses of the University of Calgary, Red Deer College and U of Alberta.

These systems would grow into wider networks and eventually link Edmonton and Calgary with a 300 km section of high speed transit line.

The proposed line has the potential to reduce the travel time between Edmonton and Calgary to 45 minutes, compared to about three hours by road. Magnovate was founded in 2012 and has already raised $2 million from Cross Point Venture Partners in Silicon Valley.

Magline is third generation technology because of the HSPS technology and the two inch vertical levitation gap, which is much larger than existing systems.

The larger levitation gap will reduce construction costs of the substructure and allow the use of lighter tracks, as there is no longer a need for close-tolerance track alignment.

The vertical levitation gap of Magline design is an order of magnitude larger than those of existing designs, obviating the need for close-tolerance track alignment, and permitting the use of lighter rails and reduces capital costs. Based on a “Halbach Array” of magnets, Magline technology can switch tracks without mechanically moving the guideway.

It thus can achieve high-speed passive switching while maintaining lateral stability and directional control using much lighter guideways. Magline enables a variety of high speed vehicles to run with short headways on elaborate networks of guideways connecting through multiple Transit Oriented Developments and stations.

An average kilometer of High speed rail track in China costs between $4.8 million USD (Jiaoji Line) to $32.7 million USD (Zhengxi Line), which is significantly less than the estimated $380 million USD to $ 625 million USD it will cost for laying down the British HSR2 project.

Lightweight Infrastructure

Lightweight infrastructure brings several advantages, especially when systems operate using off-line stations and individual vehicles instead of trains. Eliminating massive, heavy trains of cars further reduces the need for mammoth bridges and other extra heavy infrastructural components. Computer controlled individual vehicles running at short headway distances and high speeds can create many new operating efficiencies, because they are able to bypass one another at stations and employ network routing. Off-line stations enable vehicles with no disembarking passengers to bypass stations where vehicles ahead may have stopped. Vehicles arrive more frequently and stop only where passengers aboard hold tickets, reducing wait and travel times.

Substantially less expensive infrastructure means developers can create a larger network to serve more populations even those remote from major cities. The greater the number of hubs in the network, the greater the number of possible paths between destinations. Computers can reroute vehicles at every hub to optimize travel network efficiency and minimize travel times. Routing vehicles based on real time ticket sales data not only eliminates unnecessary stops but also could determine a specific vehicle’s programmed route, bypassing entire sections of the network.

Magline is not compatible with China’s high speed rail.

China is far along with its high speed rail buildout and is exporting to other nations

The advantage of having a high speed rail network builtout is that you may be able to build other high speed rail beside if there is enough extra land along the current tracks. Also, no land would need to be taken from existing private landowners for a new network. You can just replace the existing network when you want to switch to anything clearly faster and better (like potentially Hyperloop)

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks